Ejemplo n.º 1
0
def _create_result(
    problem: Problem,
    ls_result: OptimizeResult | None,
    free_parameter_labels: list[str],
    termination_reason: str,
) -> Result:

    success = ls_result is not None

    number_of_function_evaluation = (ls_result.nfev if ls_result is not None
                                     else len(problem.parameter_history))
    number_of_jacobian_evaluation = ls_result.njev if success else None
    optimality = ls_result.optimality if success else None
    number_of_data_points = ls_result.fun.size if success else None
    number_of_variables = ls_result.x.size if success else None
    degrees_of_freedom = number_of_data_points - number_of_variables if success else None
    chi_square = np.sum(ls_result.fun**2) if success else None
    reduced_chi_square = chi_square / degrees_of_freedom if success else None
    root_mean_square_error = np.sqrt(reduced_chi_square) if success else None
    jacobian = ls_result.jac if success else None

    problem.save_parameters_for_history()
    history_index = None if success else -2
    data = problem.create_result_data(history_index=history_index)
    # the optimized parameters are those of the last run if the optimization has crashed
    parameters = problem.parameters
    covariance_matrix = None
    if success:
        try:
            covariance_matrix = np.linalg.inv(jacobian.T.dot(jacobian))
            standard_errors = np.sqrt(np.diagonal(covariance_matrix))
            for label, error in zip(free_parameter_labels, standard_errors):
                parameters.get(label).standard_error = error
        except np.linalg.LinAlgError:
            warn(
                "The resulting Jacobian is singular, cannot compute covariance matrix and "
                "standard errors.")

    return Result(
        additional_penalty=problem.additional_penalty,
        cost=problem.cost,
        data=data,
        free_parameter_labels=free_parameter_labels,
        number_of_function_evaluations=number_of_function_evaluation,
        initial_parameters=problem.scheme.parameters,
        optimized_parameters=parameters,
        scheme=problem.scheme,
        success=success,
        termination_reason=termination_reason,
        chi_square=chi_square,
        covariance_matrix=covariance_matrix,
        degrees_of_freedom=degrees_of_freedom,
        jacobian=jacobian,
        number_of_data_points=number_of_data_points,
        number_of_jacobian_evaluations=number_of_jacobian_evaluation,
        number_of_variables=number_of_variables,
        optimality=optimality,
        reduced_chi_square=reduced_chi_square,
        root_mean_square_error=root_mean_square_error,
    )
Ejemplo n.º 2
0
def test_problem_result_data(problem: Problem):

    data = problem.create_result_data()

    assert "dataset1" in data

    dataset = data["dataset1"]

    assert "clp_label" in dataset.coords
    assert np.array_equal(dataset.clp_label, ["s1", "s2", "s3", "s4"])

    assert problem.model.global_dimension in dataset.coords
    assert np.array_equal(dataset.coords[problem.model.global_dimension],
                          suite.e_axis)

    assert problem.model.model_dimension in dataset.coords
    assert np.array_equal(dataset.coords[problem.model.model_dimension],
                          suite.c_axis)

    assert "matrix" in dataset
    matrix = dataset.matrix
    if problem.index_dependent:
        assert len(matrix.shape) == 3
        assert matrix.shape[0] == suite.e_axis.size
        assert matrix.shape[1] == suite.c_axis.size
        assert matrix.shape[2] == 4
    else:
        assert len(matrix.shape) == 2
        assert matrix.shape[0] == suite.c_axis.size
        assert matrix.shape[1] == 4

    assert "clp" in dataset
    clp = dataset.clp
    assert len(clp.shape) == 2
    assert clp.shape[0] == suite.e_axis.size
    assert clp.shape[1] == 4

    assert "weighted_residual" in dataset
    assert dataset.data.shape == dataset.weighted_residual.shape

    assert "residual" in dataset
    assert dataset.data.shape == dataset.residual.shape

    assert "residual_singular_values" in dataset
    assert "weighted_residual_singular_values" in dataset