Ejemplo n.º 1
0
#
# To speed up training, we let CPU to pre-compute some training targets.
# This is especially nice when your CPU is powerful and you can use ``-j num_workers``
# to utilize multi-core CPU.

##############################################################################
# If we provide anchors to the training transform, it will compute training targets
train_transform = presets.ssd.SSDDefaultTrainTransform(width, height, anchors)
train_loader = DetectionDataLoader(train_dataset.transform(train_transform),
                                   batch_size,
                                   shuffle=True,
                                   last_batch='rollover',
                                   num_workers=num_workers)
from gluoncv.loss import SSDMultiBoxLoss

mbox_loss = SSDMultiBoxLoss()

for ib, batch in enumerate(train_loader):
    if ib > 0:
        break
    print('data:', batch[0].shape)
    print('class targets:', batch[1].shape)
    print('box targets:', batch[2].shape)
    with autograd.record():
        cls_pred, box_pred, anchors = net(batch[0])
        sum_loss, cls_loss, box_loss = mbox_loss(cls_pred, box_pred, batch[1],
                                                 batch[2])
        # some standard gluon training steps:
        # autograd.backward(sum_loss)
        # trainer.step(1)
Ejemplo n.º 2
0
def train_ssd300_coco(net, train_data_loader, val_data_loader, eval_metric,
                      ctx, consts, logger):
    net.collect_params().reset_ctx(ctx)
    net_optimizer = Trainer(net.collect_params(),
                            optimizer='sgd',
                            optimizer_params={
                                'learning_rate': consts.LR,
                                'wd': consts.WD,
                                'momentum': consts.MOMENTUM
                            })

    lr_decay = float(consts.LR_DECAY)
    lr_steps = sorted(
        [float(ls) for ls in consts.LR_DECAY_EPOCH if ls.strip()])

    mbox_loss = SSDMultiBoxLoss()
    ce_metric = mx.metric.Loss('CrossEntropy')
    smoothl1_metric = mx.metric.Loss('SmoothL1')

    best_mean_avg_prec = [0]
    logger.info(consts)
    logger.info(f'Starting from [Epoch {consts.START_EPOCH}]')

    for epoch in range(consts.START_EPOCH, consts.EPOCHS):
        while lr_steps and epoch >= lr_steps[0]:
            new_lr = net_optimizer.learning_rate * lr_decay
            lr_steps.pop(0)
            net_optimizer.set_learning_rate(new_lr)
            logger.info(f'[Epoch {epoch}] learning rate = {new_lr}')
        ce_metric.reset()
        smoothl1_metric.reset()
        epoch_tic = time.time()
        batch_tic = time.time()
        net.hybridize(static_alloc=True, static_shape=True)

        for i, batch in enumerate(train_data_loader):
            data = utils.split_and_load(batch[0], ctx_list=ctx)
            cls_targets = utils.split_and_load(batch[1], ctx_list=ctx)
            box_targets = utils.split_and_load(batch[2], ctx_list=ctx)

            with autograd.record():
                cls_predictions = []
                box_predictions = []

                for x in data:
                    cls_prediction, box_prediction, _ = net(x)
                    cls_predictions.append(cls_prediction)
                    box_predictions.append(box_prediction)

                sum_loss, cls_loss, box_loss = mbox_loss(
                    cls_predictions, box_predictions, cls_targets, box_targets)
                autograd.backward(sum_loss)

            net_optimizer.step(1)

            ce_metric.update(0, [l * consts.BATCH_SIZE for l in cls_loss])
            smoothl1_metric.update(0,
                                   [l * consts.BATCH_SIZE for l in box_loss])

            if not (i + 1) % consts.LOG_INTERVAL:
                ce_name, ce_loss = ce_metric.get()
                sl1_name, sl1_loss = smoothl1_metric.get()
                t_now = time.time()
                speed = consts.BATCH_SIZE / (t_now - batch_tic)
                logger.info(
                    f'[Epoch {epoch}][Batch {i}], Speed: {speed:.3f} samples/sec, '
                    f'{ce_name}={ce_loss:.3f}, {sl1_name}={sl1_loss:.3f}')

            batch_tic = time.time()

        ce_name, ce_loss = ce_metric.get()
        sl1_name, sl1_loss = smoothl1_metric.get()
        epoch_time = time.time() - epoch_tic
        logger.info(f'[Epoch {epoch}], epoch time: {epoch_time:.3f},'
                    f'{ce_name}={ce_loss:.3f}, {sl1_name}={sl1_loss:.3f}')

        if not epoch % consts.VAL_INTERVAL or not epoch % consts.SAVE_INTERVAL:
            mean_avg_prec_name, mean_avg_prec = validate_ssd300_coco(
                net, val_data_loader, ctx, eval_metric)
            val_msg = '\n'.join([
                f'{k}={v}' for k, v in zip(mean_avg_prec_name, mean_avg_prec)
            ])
            logger.info(f'[Epoch {epoch}] validation: \n{val_msg}')
            curr_mean_avg_prec = float(mean_avg_prec[-1])
        else:
            curr_mean_avg_prec = 0

        save_params(net, best_mean_avg_prec, curr_mean_avg_prec, epoch,
                    consts.SAVE_INTERVAL, consts.SAVE_PREFIX)
Ejemplo n.º 3
0
class Trainer:
    BATCH_SIZE = 16
    NUM_EPOCHS = 13
    classes = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10']
    ctx = mx.gpu()
    mboxLoss = SSDMultiBoxLoss()

    def __init__(self):
        self.net = JanetRes(classes=self.classes, use_bn=True)
        self.net.initialize(ctx=self.ctx)

        self.trainIter = image.ImageDetIter(
            batch_size=self.BATCH_SIZE,
            data_shape=(3, 300, 300),
            path_imgrec='../DataX/annoTrainX.rec',
            path_imgidx='../DataX/annoTrainX.idx',
            path_imglist='../DataX/annoTrainX.lst',
            path_root='../DataX/',
            shuffle=True,
            mean=True,
            brightness=0.3,
            contrast=0.3,
            saturation=0.3,
            pca_noise=0.3,
            hue=0.3)

        with autograd.train_mode():
            _, _, anchors = self.net(
                mx.ndarray.zeros(shape=(self.BATCH_SIZE, 3, 300, 300),
                                 ctx=self.ctx))
        self.T = TargetGenV1(anchors=anchors.as_in_context(mx.cpu()),
                             height=300,
                             width=300)

        self.net.collect_params().reset_ctx(self.ctx)
        self.trainer = gluon.Trainer(self.net.collect_params(), 'sgd', {
            'learning_rate': 0.1,
            'wd': 5e-4
        })

    def train(self):
        ce_metric = mx.metric.Loss('CrossEntropy')
        smoothl1_metric = mx.metric.Loss('SmoothL1')
        for epoch in range(self.NUM_EPOCHS):
            print('Commencing epoch', epoch)
            tic = time()
            self.trainIter.reset()

            for i, batch in enumerate(self.trainIter):
                X = batch.data[0].as_in_context(self.ctx)
                Y = batch.label[0].as_in_context(self.ctx)

                with autograd.record():
                    '''Make Predictions'''
                    clsPreds, bboxPreds, _ = self.net(X)
                    clsTargets, bboxTargets = self.T.generateTargets(
                        Y, clsPreds)

                    sumLoss, clsLoss, bboxLoss = self.mboxLoss(
                        clsPreds, bboxPreds,
                        clsTargets.as_in_context(self.ctx),
                        bboxTargets.as_in_context(self.ctx))
                    '''Compute Losses'''
                    if (i + 1) % 200 == 0:
                        print(
                            'B:{}, Loss:{:.3f}, \nClsLoss:{}, \nBboxLoss:{}\n\n'
                            .format(i,
                                    mx.nd.mean(sumLoss[0]).asscalar(),
                                    clsLoss[0].asnumpy(),
                                    bboxLoss[0].asnumpy()))

                    autograd.backward(sumLoss)
                self.trainer.step(self.BATCH_SIZE)
                ce_metric.update(0, [l * self.BATCH_SIZE for l in clsLoss])
                smoothl1_metric.update(0,
                                       [l * self.BATCH_SIZE for l in bboxLoss])

            name1, loss1 = ce_metric.get()
            name2, loss2 = smoothl1_metric.get()
            print(
                '[Epoch {}], Speed: {:.3f} samples/sec, {}={:.3f}, {}={:.3f}'.
                format(epoch, self.BATCH_SIZE / (time() - tic), name1, loss1,
                       name2, loss2))

            self.net.save_parameters('../params/2X7' + 'Xnet' + str(epoch) +
                                     '.params')
Ejemplo n.º 4
0
class Trainer:
    NUM_EPOCHS = 20
    classes = ['1', '2']
    ctx = mx.gpu()
    lossFunction = SSDMultiBoxLoss()

    def __init__(self, batchSize):
        self.net = Brunette(classes=self.classes)
        self.net.initialize(mx.init.Xavier(magnitude=2), ctx=self.ctx)
        self.batchSize = batchSize
        self.trainIter = image.ImageDetIter(batch_size=self.batchSize,
                                            data_shape=(3, 300, 300),
                                            path_imgrec='utils/TrainY.rec',
                                            path_imgidx='utils/TrainY.idx',
                                            shuffle=True,
                                            mean=True,
                                            brightness=0.3,
                                            contrast=0.3,
                                            saturation=0.3,
                                            pca_noise=0.3,
                                            hue=0.3)

        # with autograd.train_mode():
        #     _, _, anchors = self.net(mx.ndarray.zeros(shape=(self.batchSize, 3, 300, 300), ctx=self.ctx))

        # self.T = TargetGenV2(anchors=anchors.as_in_context(mx.cpu()), height=300, width=300)
        print("2")
        self.net.collect_params().reset_ctx(self.ctx)
        self.trainer = gluon.Trainer(self.net.collect_params(), 'sgd', {
            'learning_rate': 0.1,
            'wd': 3e-4
        })

    def training_targets(self, anchors, class_preds, labels):
        class_preds = class_preds.transpose(
            axes=(0, 2, 1))  # batchsize x num_cls x num_anchors
        box_target, box_mask, cls_target = mx.contrib.ndarray.MultiBoxTarget(
            anchors,
            labels,
            class_preds,
            overlap_threshold=.5,
            ignore_label=-1,
            negative_mining_ratio=3,
            minimum_negative_samples=0,
            negative_mining_thresh=.5,
            variances=(0.1, 0.1, 0.2, 0.2),
            name="multibox_target")

        return box_target, box_mask, cls_target

    def train(self):
        print('Preparing to train')
        metricClass = mx.metric.Loss('CrossEntropy')
        metricBox = mx.metric.Loss('SmoothL1')

        for epoch in range(self.NUM_EPOCHS):
            print('Commencing epoch', epoch)
            tic = time()
            self.trainIter.reset()

            for i, batch in enumerate(self.trainIter):
                X = batch.data[0].as_in_context(self.ctx)
                Y = batch.label[0].as_in_context(self.ctx)

                with autograd.record():
                    '''Make Predictions'''
                    clsPreds, bboxPreds, anchors = self.net(X)
                    # clsTargets, bboxTargets = self.T.generateTargets(Y, clsPreds)
                    clsTargets, _, bboxTargets = self.training_targets(
                        anchors, clsPreds, Y)
                    print(clsTargets, bboxTargets)
                    return
                    sumLoss, clsLoss, bboxLoss = self.lossFunction(
                        clsPreds, bboxPreds,
                        clsTargets.as_in_context(self.ctx),
                        bboxTargets.as_in_context(self.ctx))
                    '''Compute Losses'''
                    if (i + 1) % 200 == 0:
                        print(
                            'B:{}, Loss:{:.3f}, \nClsLoss:{}, \nBboxLoss:{}\n\n'
                            .format(i,
                                    mx.nd.mean(sumLoss[0]).asscalar(),
                                    clsLoss[0].asnumpy(),
                                    bboxLoss[0].asnumpy()))
                    # back-propagate #TODO 1st vs 2nd order derivative??
                    autograd.backward(sumLoss)
                self.trainer.step(self.batchSize)

                metricClass.update(0, [l * self.batchSize for l in clsLoss])
                metricBox.update(0, [l * self.batchSize for l in bboxLoss])

            name1, loss1 = metricClass.get()
            name2, loss2 = metricBox.get()

            print(
                '[Epoch {}], Speed: {:.3f} samples/sec, {}={:.3f}, {}={:.3f}'.
                format(epoch, self.batchSize / (time() - tic), name1, loss1,
                       name2, loss2))
            if epoch % 2 != 0:
                self.net.save_parameters('models/' + 'netV6-0--' + str(epoch) +
                                         '.params')