Ejemplo n.º 1
0
    def visualize(self, img, json_data, outfile):
        """
        Visualize detections
        :param img: image where masks will be drawn
        :param json_data: json generated by save_json_boxes()
        :param outfile: output png file
        """
        reverse_map = {
            val: key
            for (key, val) in self.__maskrcnn_to_coco.items()
        }
        ids = np.array([reverse_map[x['class']] for x in json_data])
        scores = np.array([float(x['score']) for x in json_data])
        bboxes = [x['bbox'] for x in json_data]
        masks = [extract_mask(x['mask']) for x in json_data]

        #Plot data
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        out_img = plot_mask(img, masks)
        plot_bbox(out_img,
                  bboxes,
                  scores,
                  ids,
                  class_names=self.__model.classes,
                  ax=ax)
        plt.savefig(outfile)
        plt.close()
Ejemplo n.º 2
0
def detect(event, context):
    # get the url
    data = json.loads(event['body'])

    if 'url' not in data:
        response = {"statusCode": 500, "body": "Please specify a url"}
        return response

    url = data['url']
    # download the image
    urlSplit = url.split('/')
    fileName = urlSplit[-1]
    filePath = wget.download(url, out="/tmp/{0}".format(fileName))

    # classify the image
    x, img = load_test(filePath, short=512)
    classes, scores, bbox = ssdnet(x)

    results = []

    # for each result, we'll take the each
    # them if their score is greater than a given threshold
    for i in range(len(scores[0])):
        if float(scores[0][i].asnumpy().tolist()[0]) > score_threshold:
            results.append({
                "class":
                ssdnet.classes[int(classes[0][i].asnumpy().tolist()[0])],
                "score":
                float(scores[0][i].asnumpy().tolist()[0]),
                "bbox":
                bbox[0][i].asnumpy().tolist()
            })

    # plot the box of the image and then store it in S3
    plot_bbox(img, bbox[0], scores[0], classes[0], class_names=ssdnet.classes)

    tmpOutPath = "/tmp/detect_{0}".format(fileName)
    plt.savefig(tmpOutPath)

    s3_key = "images/detect_{0}".format(fileName)
    s3_bucket_name = "gudongfeng.me"
    s3.upload_file(tmpOutPath, s3_bucket_name, s3_key)

    body = {
        "bounding_boxes": results,
        "s3_url": getS3Url(s3_bucket_name, s3_key)
    }

    response = {
        "statusCode": 200,
        "body": json.dumps(body),
        "headers": {
            'Access-Control-Allow-Origin': '*',
            'Access-Control-Allow-Credentials': True,
            'Content-Type': 'application/json'
        },
    }

    return response
Ejemplo n.º 3
0
 def viz(self, indexes=None):
     from gluoncv.utils.viz import plot_bbox
     import matplotlib.pyplot as plt
     if indexes is None:
         indexes = range(len(self))
     for index in indexes:
         x = self.at_with_image_path(index)
         img_path = x[0]
         img = cv2.imread(img_path)[:, :, ::-1]
         plot_bbox(img,
                   x[1][:, :4],
                   labels=x[1][:, 4],
                   class_names=self.classes)
         plt.show()
Ejemplo n.º 4
0
def plot_example(img, datasets, label, preds, axs, threshold, classes):

    for i, (dataset, ax) in enumerate(zip(datasets, axs)):
        rimg = img
        #     sizes = (800, 600)
        #     rimg = cv2.resize(img, dsize=sizes[model], interpolation=cv2.INTER_NEAREST)
        pred = preds[dataset]
        ax = viz.plot_bbox(rimg,
                           pred[:, :4],
                           scores=pred[:, 5],
                           labels=pred[:, 4],
                           class_names=classes,
                           ax=ax,
                           thresh=threshold)
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
        if i == 0:
            bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="b", lw=2)
            ax.text(20,
                    60,
                    label,
                    fontdict={
                        'weight': 'bold',
                        'size': 20,
                        'color': 'black'
                    },
                    bbox=bbox_props)

            dataset = val_ds_real
    def run(self, img_name, visualize=True, thresh=0.9):
        '''
        User function: Run inference on image and visualize it

        Args:
            img_name (str): Relative path to the image file
            visualize (bool): If True, displays image with predicted bounding boxes and scores
            thresh (float): Threshold for predicted scores. Scores for objects detected below this score will not be displayed 

        Returns:
            dict: Contaning IDs, Scores and bounding box locations of predicted objects. 
        '''
        x, image = gcv.data.transforms.presets.ssd.load_test(
            img_name, self.system_dict["img_size"][0])
        self.system_dict["local"]["cid"], self.system_dict["local"][
            "score"], self.system_dict["local"]["bbox"] = self.system_dict[
                "local"]["net"](x.copyto(self.system_dict["local"]["ctx"][0]))

        tmp = {}
        tmp["IDs"] = self.system_dict["local"]["cid"]
        tmp["Scores"] = self.system_dict["local"]["score"]
        tmp["Boxes"] = self.system_dict["local"]["bbox"]

        ax = viz.plot_bbox(image,
                           self.system_dict["local"]["bbox"][0],
                           self.system_dict["local"]["score"][0],
                           self.system_dict["local"]["cid"][0],
                           class_names=self.system_dict["classes"],
                           thresh=thresh)
        if (visualize):
            plt.show()
        plt.savefig("output.png")

        return tmp
Ejemplo n.º 6
0
 def viz_seg(self, indexes=None):
     from gluoncv.utils.viz import plot_bbox
     import matplotlib.pyplot as plt
     if indexes is None:
         indexes = range(len(self))
     for index in indexes:
         x = self.at_with_image_path(index)
         img_path = x[0]
         img = cv2.imread(img_path)[:, :, ::-1]
         plot_bbox(img,
                   x[1][:, :4],
                   labels=x[1][:, 4],
                   class_names=self.classes)
         for k in range(len(x[2])):
             p = plt.Polygon(zip(x[2][k][0][:, 0], x[2][k][0][:, 1]),
                             alpha=.4)
             plt.gca().add_patch(p)
         plt.show()
Ejemplo n.º 7
0
def test_image_bb(file_path):
    img = mx.image.imread(file_path)
    print(img)
    classes = ['mercedes']  # only one foreground class here
    bb = [615, 1077, 840, 1298]
    all_boxes = np.array([bb, bb])
    print('label:', bb)
    labels = ["", "", "", ""]
    # display image and label
    ax = viz.plot_bbox(img, all_boxes, labels=None, class_names=classes)
    plt.show()
Ejemplo n.º 8
0
def test():

    #Test
    classes = ['mercedes']
    test_url = 'https://blog.mercedes-benz-passion.com/wp-cb4ef-content/uploads/EQC_SPOT_Mercedes_Antoni_Garage_2019_Spot_EQC_Campaign_EN_DE_11.jpg'
    download(test_url, 'benz_test.jpg')
    classes = ['mercedes', 'person', 'car']
    net = gcv.model_zoo.get_model('ssd_512_mobilenet1.0_custom',
                                  classes=classes,
                                  pretrained_base=False,
                                  ctx=ctx)
    net.load_parameters('ssd_512_mobilenet1.0_benz100.params')
    net.hybridize()

    x, image = gcv.data.transforms.presets.ssd.load_test('benz_test.jpg', 512)
    cid, score, bbox = net(x)
    ax = viz.plot_bbox(image, bbox[0], score[0], cid[0], class_names=classes)
    plt.show()
Ejemplo n.º 9
0
def viz_result(img_ORI, det_full_masks, det_bbox, det_id, img_id):
    CLASSES = [
        '1j', '2j', '3j', '4j', '5j', '6j', '7j', '8j', '9j', '10j', '11j',
        '12j', '13j', '14j', '15j', '16j', '17j'
    ]
    train_image = img_ORI.transpose([1, 2, 0])
    from matplotlib import pyplot as plt
    from gluoncv.utils import viz
    plt.ioff()
    width, height = train_image.shape[1], train_image.shape[0]
    train_masks = det_full_masks
    plt_image = viz.plot_mask(train_image * 255, train_masks)
    fig = plt.figure(figsize=(5, 10))
    ax = fig.add_subplot(1, 1, 1)
    ax = viz.plot_bbox(plt_image,
                       det_bbox,
                       labels=det_id,
                       class_names=CLASSES,
                       ax=ax)
    # plt.show()
    fig.savefig(str(img_id) + '.jpg')
Ejemplo n.º 10
0
    def update_display(self):
        if self.current_idx < len(self.filelist):
            x, image = gcv.data.transforms.presets.ssd.load_test(self.filelist[self.current_idx], 512)
            cid, score, bbox = self.net(x)
            ax = viz.plot_bbox(image, bbox[0], score[0], cid[0], class_names="pot")
            plt.rcParams['figure.figsize'] = (10,10)
            plt.savefig("test.png")
            plt.close()

            self.img1 = Image.open(self.filelist[self.current_idx])
            print(self.filelist[self.current_idx], self.img1)
            self.render1 = ImageTk.PhotoImage(self.img1)
            self.image1.configure(image=self.render1)
            self.image1.image = self.render1
            self.image1.update()

            self.img2 = Image.open("test.png")
            self.render2 = ImageTk.PhotoImage(self.img2)
            self.image2.configure(image=self.render2)
            self.image2.image = self.render2
            self.image2.update()
    def run(self, img_name, visualize=True, thresh=0.9):
        x, image = gcv.data.transforms.presets.ssd.load_test(
            img_name, self.system_dict["img_size"][0])
        self.system_dict["local"]["cid"], self.system_dict["local"][
            "score"], self.system_dict["local"]["bbox"] = self.system_dict[
                "local"]["net"](x.copyto(self.system_dict["local"]["ctx"][0]))

        tmp = {}
        tmp["IDs"] = self.system_dict["local"]["cid"]
        tmp["Scores"] = self.system_dict["local"]["score"]
        tmp["Boxes"] = self.system_dict["local"]["bbox"]

        if (visualize):
            ax = viz.plot_bbox(image,
                               self.system_dict["local"]["bbox"][0],
                               self.system_dict["local"]["score"][0],
                               self.system_dict["local"]["cid"][0],
                               class_names=self.system_dict["classes"],
                               thresh=thresh)
            plt.show()

        return tmp
Ejemplo n.º 12
0
    def create_widgets(self):
        self.save = tk.Button(self)
        self.save["text"] = "Save"
        self.save["command"] = self.save_cmd
        self.save.grid(row=0, column=0)

        self.next = tk.Button(self)
        self.next["text"] = "Next"
        self.next["command"] = self.next_cmd
        self.next.grid(row=0, column=1)

        self.prev = tk.Button(self)
        self.prev["text"] = "Prev"
        self.prev["command"] = self.prev_cmd
        self.prev.grid(row=0, column=2)

        x, image = gcv.data.transforms.presets.ssd.load_test(self.filelist[self.current_idx], 512)
        cid, score, bbox = self.net(x)
        ax = viz.plot_bbox(image, bbox[0], score[0], cid[0], class_names="pot")
        plt.rcParams['figure.figsize'] = (10, 10)
        plt.savefig("test.png")
        plt.close()

        self.img1 = Image.open(self.filelist[self.current_idx])
        print(self.filelist[self.current_idx], self.img1)
        self.render1 = ImageTk.PhotoImage(self.img1)
        self.image1 = Label(self, image=self.render1)
        self.image1.grid(row=1, column=0)

        self.img2 = Image.open("test.png")
        self.render2 = ImageTk.PhotoImage(self.img2)
        self.image2 = Label(self, image=self.render2)
        self.image2.grid(row=1, column=2)

        self.label = Label(self, text="{0:05d}".format(self.current_idx) + "/" + "{0:05d}".format(len(self.filelist)))
        self.label.grid(row=2, column=0)

        self.quit = tk.Button(self, text="QUIT", fg="red", command=self.master.destroy)
        self.quit.grid(row=0, column=3)
Ejemplo n.º 13
0
cids = train_label[:, 4:5]
print('image:', train_image.shape)
print('bboxes:', bboxes.shape, 'class ids:', cids.shape)
# segm is a list of polygons which are arrays of points on the object boundary
print('masks', [[poly.shape for poly in polys] for polys in train_segm])

##############################################################################
# Plot the image with boxes and labels:
from matplotlib import pyplot as plt
from gluoncv.utils import viz

fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 1, 1)
ax = viz.plot_bbox(train_image,
                   bboxes,
                   labels=cids,
                   class_names=train_dataset.classes,
                   ax=ax)
plt.show()

##############################################################################
# To actually see the object segmentation, we need to convert polygons to masks
import numpy as np
from gluoncv.data.transforms import mask as tmask

width, height = train_image.shape[1], train_image.shape[0]
train_masks = np.stack(
    [tmask.to_mask(polys, (width, height)) for polys in train_segm])
plt_image = viz.plot_mask(train_image, train_masks)

##############################################################################
Ejemplo n.º 14
0
train_image, train_label, train_segm = train_dataset[6]
bboxes = train_label[:, :4]
cids = train_label[:, 4:5]
print('image:', train_image.shape)
print('bboxes:', bboxes.shape, 'class ids:', cids.shape)
# segm is a list of polygons which are arrays of points on the object boundary
print('masks', [[poly.shape for poly in polys] for polys in train_segm])

##############################################################################
# Plot the image with boxes and labels:
from matplotlib import pyplot as plt
from gluoncv.utils import viz

fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 1, 1)
ax = viz.plot_bbox(train_image, bboxes, labels=cids, class_names=train_dataset.classes, ax=ax)
plt.show()

##############################################################################
# To actually see the object segmentation, we need to convert polygons to masks
import numpy as np
from gluoncv.data.transforms import mask as tmask
width, height = train_image.shape[1], train_image.shape[0]
train_masks = np.stack([tmask.to_mask(polys, (width, height)) for polys in train_segm])
plt_image = viz.plot_mask(train_image, train_masks)

##############################################################################
# Now plot the image with boxes, labels and masks
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 1, 1)
ax = viz.plot_bbox(plt_image, bboxes, labels=cids, class_names=train_dataset.classes, ax=ax)
classes = [
    'car', 'articulated_truck', 'bus', 'bicycle', 'motorcycle',
    'motorized_vehicle', 'pedestrian', 'single_unit_truck', 'work_van',
    'pickup_truck', 'non-motorized_vehicle'
]

net = gcv.model_zoo.get_model('ssd_512_resnet50_v1_voc', pretrained_base=False)
net.reset_class(classes)
net.load_parameters(
    '../models_for_ensemble/epoch_22_ssd_512_resnet50_v1_voc_mio_tcd.params')

x, image = gcv.data.transforms.presets.ssd.load_test(
    '../sample_data/00110281.jpg', 512)
cid, score, bbox = net(x)
ax = viz.plot_bbox(image, bbox[0], score[0], cid[0], class_names=classes)
plt.show()

x, image = gcv.data.transforms.presets.ssd.load_test(
    '../sample_data/00110288.jpg', 512)
cid, score, bbox = net(x)
ax = viz.plot_bbox(image, bbox[0], score[0], cid[0], class_names=classes)
plt.show()

x, image = gcv.data.transforms.presets.ssd.load_test(
    '../sample_data/00110306.jpg', 512)
cid, score, bbox = net(x)
ax = viz.plot_bbox(image, bbox[0], score[0], cid[0], class_names=classes)
plt.show()

x, image = gcv.data.transforms.presets.ssd.load_test(
##########################################################
# Data transform
# --------------
# We can read an image-label pair from the training dataset:
train_image, train_label = train_dataset[6]
bboxes = train_label[:, :4]
cids = train_label[:, 4:5]
print('image:', train_image.shape)
print('bboxes:', bboxes.shape, 'class ids:', cids.shape)

##############################################################################
# Plot the image, together with the bounding box labels:
from matplotlib import pyplot as plt
from gluoncv.utils import viz

ax = viz.plot_bbox(train_image.asnumpy(), bboxes, labels=cids, class_names=train_dataset.classes)
plt.show()

##############################################################################
# Validation images are quite similar to training because they were
# basically split randomly to different sets
val_image, val_label = val_dataset[6]
bboxes = val_label[:, :4]
cids = val_label[:, 4:5]
ax = viz.plot_bbox(val_image.asnumpy(), bboxes, labels=cids, class_names=train_dataset.classes)
plt.show()

##############################################################################
# For Faster-RCNN networks, the only data augmentation is horizontal flip.
from gluoncv.data.transforms import presets
from gluoncv import utils
 def detect(self, image, plot=False):
     image_tensor, image = gcv.data.transforms.presets.ssd.load_test(image, self.width)
     labels, scores, bboxes = self.net(image_tensor.as_in_context(self.ctx))
     if plot:
         ax = viz.plot_bbox(image, bboxes[0], scores[0], labels[0], class_names=self.net.classes)
         plt.show()
Ejemplo n.º 18
0
# Data transform
# --------------
# We can read an image-label pair from the training dataset:
train_image, train_label = train_dataset[6]
bboxes = train_label[:, :4]
cids = train_label[:, 4:5]
print('image:', train_image.shape)
print('bboxes:', bboxes.shape, 'class ids:', cids.shape)

##############################################################################
# Plot the image, together with the bounding box labels:
from matplotlib import pyplot as plt
from gluoncv.utils import viz

ax = viz.plot_bbox(train_image.asnumpy(),
                   bboxes,
                   labels=cids,
                   class_names=train_dataset.classes)
plt.show()

##############################################################################
# Validation images are quite similar to training because they were
# basically split randomly to different sets
val_image, val_label = val_dataset[6]
bboxes = val_label[:, :4]
cids = val_label[:, 4:5]
ax = viz.plot_bbox(val_image.asnumpy(),
                   bboxes,
                   labels=cids,
                   class_names=train_dataset.classes)
plt.show()
Ejemplo n.º 19
0
                   **kwargs)


if __name__ == '__main__':
    classes = ['taxi', 'tax', 'quo', 'general', 'train', 'road', 'plane']
    # orientation = ['0','90','180','270']
    orientation = ['down', 'left', 'up', 'right']
    net = ssd_512_mobilenet1_0_voc(classes=classes)
    net.load_parameters('ssd_512_mobilenet1.0_pikachu.params')

    # x, image = gcv.data.transforms.presets.ssd.load_test('./20190722135231_ori.jpg', 512)
    x, image = gcv.data.transforms.presets.ssd.load_test(
        './201907121159292.jpg', 512)
    # x, image = gcv.data.transforms.presets.ssd.load_test('./test.jpg', 512)

    cid, score, bbox, orien = net(x)
    ax = viz.plot_bbox(image,
                       bbox[0],
                       score[0],
                       cid[0],
                       class_names=classes,
                       thresh=0.3)
    ax = viz.plot_bbox(image,
                       bbox[0],
                       score[0],
                       orien[0],
                       class_names=orientation,
                       thresh=0.3)
    plt.show()
    print(orien[0, :4, 0])
    print(cid[0, :4, 0])
Ejemplo n.º 20
0
"""
使用VIS进行图片显示
"""
from matplotlib import pyplot as plt
from gluoncv.utils import viz
from PIL import Image
import numpy as np

image = np.array(Image.open("./images/biking.jpg"))
print(image.shape)
bboxes = np.array([[100, 100, 300, 400]])
cids = np.array([1])
classes = ["person", "cat"]

fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 1, 1)
ax = viz.plot_bbox(image, bboxes, labels=cids, class_names=classes, ax=ax)
plt.show()
Ejemplo n.º 21
0
# ----------------
# First we will start with a nice Pikachu dataset generated by rendering 3D models on random real-world scenes.
# You can refer to :ref:`sphx_glr_build_examples_datasets_detection_custom.py` for tutorial of how to create your own datasets.
url = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/pikachu/train.rec'
idx_url = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/pikachu/train.idx'
download(url, path='pikachu_train.rec', overwrite=False)
download(idx_url, path='pikachu_train.idx', overwrite=False)

#############################################################################################
# We can load dataset using ``RecordFileDetection``
dataset = gcv.data.RecordFileDetection('pikachu_train.rec')
classes = ['pikachu']  # only one foreground class here
image, label = dataset[0]
print('label:', label)
# display image and label
ax = viz.plot_bbox(image, bboxes=label[:, :4], labels=label[:, 4:5], class_names=classes)
plt.show()


#############################################################################################
# Pre-trained models
# -------------------
# Now we can grab a pre-trained model to finetune from. Here we have so many choices from :ref:`gluoncv-model-zoo-detection` Model Zoo.
# Again for demo purpose, we choose a fast SSD network with MobileNet1.0 backbone.
net = gcv.model_zoo.get_model('ssd_512_mobilenet1.0_voc', pretrained=True)

#############################################################################################
# reset network to predict pikachus!
net.reset_class(classes)
# now the output layers that used to map to VOC classes are now reset to distinguish pikachu (and background).
Ejemplo n.º 22
0
def test():
    x, image = gcv.data.transforms.presets.ssd.load_test('ball.png', 300)
    cid, score, bbox = net(x)

    ax = viz.plot_bbox(image, bbox[0], score[0], cid[0], class_names='ball')
    plt.show()
Ejemplo n.º 23
0
def page_loop(page_number, beginning_index, predictions, image_folder, pdf,
              confidence_filter):
    '''Loop over a single image page of the output pdf.'''

    row = min(MAX_ROW, int((len(predictions) - beginning_index) / COL + 1))
    last_index = min(len(predictions), beginning_index + row * COL)
    logger.info(
        "page number: {}, row number: {}, beginning index: {}, last index: {}".
        format(page_number, row, beginning_index, last_index))

    fig, axes = plt.subplots(nrows=row,
                             ncols=COL,
                             figsize=(20, 20),
                             facecolor='white',
                             dpi=100)
    fig.suptitle('Page {}'.format(page_number), fontsize=24)

    for i in range(beginning_index, last_index):
        entry = predictions[i]
        try:

            image_path = os.path.join(image_folder, entry['image'])

            img = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
            # Resize image to fit network input
            # origs = cv2.resize(img, (SHAPE,SHAPE))
            origs = img
            # tensors, origs = yolo_transform.load_test(image_path, short=SHAPE)
            height, width, _c = origs.shape
            labels = np.array(entry['prediction'])

            if (len(entry['prediction']) > 0):
                cid = labels[:, 0]
                score = labels[:, 1]
                bbox = labels[:, range(2, 6)]

                bbox[:, (0, 2)] *= width
                bbox[:, (1, 3)] *= height
            else:
                cid = []
                score = []
                bbox = []
            img_name = entry['image'].split(".")[0]
            if row == 1:
                ax = axes[(i - beginning_index) % COL]
            else:
                ax = axes[int((i - beginning_index) / COL),
                          (i - beginning_index) % COL]
            ax.set_title("{}".format(img_name))
            ax.get_xaxis().set_visible(False)
            ax.get_yaxis().set_visible(False)
            axis = viz.plot_bbox(origs,
                                 bbox,
                                 score,
                                 cid,
                                 thresh=confidence_filter,
                                 class_names=CLASSES,
                                 ax=ax)
        except:
            logger.error(json.dumps(entry, indent=2))
            raise
    next_page_number = page_number + 1
    next_beginning_index = last_index
    pdf.savefig()
    plt.close()

    return next_page_number, next_beginning_index
Ejemplo n.º 24
0
    @property
    def num_class(self):
        return len(self.classes)


train_dataset = DetectionDataset('train_data')
print('class_names:', train_dataset.classes)
print('num_images:', len(train_dataset))

sample = train_dataset[0]
train_image = sample[0]
train_label = sample[1]

ax = viz.plot_bbox(train_image.asnumpy(),
                   train_label[:, :4],
                   labels=train_label[:, 4:5],
                   class_names=train_dataset.classes)
plt.show()


def train_model(train_dataset, epochs=50):
    ctx = mx.gpu(0)
    net = gcv.model_zoo.get_model('ssd_512_resnet50_v1_custom',
                                  classes=train_dataset.classes,
                                  transfer='coco')
    net.collect_params().reset_ctx(ctx)
    width, height = 512, 512  # suppose we use 512 as base training size
    train_transform = gcv.data.transforms.presets.ssd.SSDDefaultTrainTransform(
        width, height)
    gcv.utils.random.seed(233)
Ejemplo n.º 25
0
 def imshow(self, index):
     path, gtboxes = self[index]
     img = io.imread(path)
     ax = viz.plot_bbox(img, bboxes=gtboxes, labels = np.zeros(len(gtboxes)), class_names=self.classes)
     plt.show()
Ejemplo n.º 26
0
Archivo: new.py Proyecto: BGHB/DF_TSR
 #                         batch_size, shuffle=False, batchify_fn=batchify_fn, last_batch='keep', num_workers=num_workers)
 from matplotlib import pyplot as plt
 from gluoncv.utils import viz
 for i, batch in enumerate(train_loader):
     if i > 0:
         break
     print('data:', batch[0].shape)
     print('class targets:', batch[1].shape)
     print('box targets:', batch[2].shape)
     data = batch[0][0]
     img = data.transpose((1, 2, 0)) * nd.array(
         (0.229, 0.224, 0.225)) + nd.array((0.485, 0.456, 0.406))
     # train_image2 = (train_image2 * 255).clip(0, 255)
     train_image2 = (train_image2 * 255).clip(0, 255)
     ax = viz.plot_bbox(train_image2.asnumpy(),
                        batch[1][:, :4],
                        labels=batch[2][:, ],
                        class_names=train_dataset.classes)
     plt.show()
     # img = data.transpose(1, 2, 0)
     # img = img.asnumpy()
     # cv2.imshow("win", img)
     # cv2.waitKey(0)
     # train_image, train_label = train_dataset[0]
     #
     # train_image2, cids, train_label2 = train_transformed(train_image, train_label)
     #
     # train_image2 = train_image2.transpose((1, 2, 0)) * nd.array((0.229, 0.224, 0.225)) + nd.array((0.485, 0.456, 0.406))
     # # train_image2 = (train_image2 * 255).clip(0, 255)
     # cvimg = train_image2.asnumpy()
     #
     # # cvimg = cv2.rectangle(cvimg, (train_label2[0][0], train_label2[0][1]), (train_label2[0][2], train_label2[0][3]), (0, 255, 0), 1)
Ejemplo n.º 27
0
def plot_bbox(img, bbox, score, cid, classes, model):
    """ plots bounding boxes on the given image """
    print("Plotting")
    ax = viz.plot_bbox(img, bbox, score, cid, thresh=0.5, class_names=classes)
    plt.suptitle(model)
    plt.show()
Ejemplo n.º 28
0
wd = args.wd
momentum = args.momentum
netName = args.netName
gpu_ind = args.gpu_ind
path_to_model = args.finetune_model

# load dataset from Lst file
dataset = gcv.data.LstDetection(LSTpath, root=images_root)
print(dataset)
image = dataset[0][0]
label = dataset[0][1]
print('label:', label)

# display image and label
ax = viz.plot_bbox(image,
                   bboxes=label[:, :4],
                   labels=label[:, 4:5],
                   class_names=classes)
plt.savefig('labeled_image.jpg')

#initalize model
net, input_size = model_zoo.get_model(netName,
                                      pretrained=False,
                                      classes=classes)
if finetune_model == '':
    net.initialize()
    net.reset_class(classes)
else:
    net.load_parameters(path_to_model)
    net.reset_class(classes)
print(net)
Ejemplo n.º 29
0
def test_video():

    fourcc = cv2.VideoWriter_fourcc(*"MJPG")

    video_writer = None

    classes = ['mercedes', 'person', 'car']
    net = gcv.model_zoo.get_model('ssd_512_mobilenet1.0_custom',
                                  classes=classes,
                                  pretrained_base=False,
                                  ctx=ctx)
    net.load_parameters('ssd_512_mobilenet1.0_benz100.params')
    net.hybridize()
    #Test video
    #url ='https://www.youtube.com/watch?v=7iGFH5HbWGM' #'https://github.com/bryanyzhu/tiny-ucf101/raw/master/abseiling_k400.mp4'
    #video_fname = utils.download(url)
    vr = VideoReader("test3.mov")
    duration = len(vr)
    print('The video contains %d frames' % duration)

    root_path = "video_rec_tmp/"
    cap = cv2.VideoCapture("test3.mov")
    cnt = 0
    while (cap.isOpened()):
        ret, frame = cap.read()

        imp_path = root_path + str(cnt) + ".jpg"
        cv2.imwrite(imp_path, frame)
        cnt += 1
        x, image = gcv.data.transforms.presets.ssd.load_test(imp_path, 512)
        cid, score, bbox = net(x)

        if (cnt == 500000000):
            ax = viz.plot_bbox(image,
                               bbox[0],
                               score[0],
                               cid[0],
                               class_names=classes)
            plt.show()

        if not ret: break

        #ax = viz.plot_bbox(image, bbox[0], score[0], cid[0], class_names=classes) score[0]
        viz.cv_plot_bbox(image, bbox[0], score[0], cid[0], class_names=classes)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        if video_writer is None:
            height, width, layers = image.shape
            video_writer = cv2.VideoWriter(
                "video_rec_tmp/mercedes_rec15min.avi", fourcc, 30,
                (width, height))
            print(video_writer)

        cv2.imshow('Mercedes Recognition & Track CV', image)
        print(cnt)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        cv2.imwrite(imp_path, image)
        video_writer.write(image)

    cap.release()
    video_writer.release()
Ejemplo n.º 30
0
def visualize_data(img, gt_box, gt_label, teacher_box, teacher_score, teacher_label, classes):
    img = inverse_transformation(img)  # inverse transformation to get image
    viz.plot_bbox(img, gt_box, mx.ndarray.ones(gt_box.shape[0]), gt_label, class_names=classes)
    viz.plot_bbox(img, teacher_box, teacher_score, teacher_label, class_names=classes)
    plt.show()
# First we will start with a nice Pikachu dataset generated by rendering 3D models on random real-world scenes.
# You can refer to :ref:`sphx_glr_build_examples_datasets_detection_custom.py` for tutorial of how to create your own datasets.
url = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/pikachu/train.rec'
idx_url = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/pikachu/train.idx'
download(url, path='pikachu_train.rec', overwrite=False)
download(idx_url, path='pikachu_train.idx', overwrite=False)

#############################################################################################
# We can load dataset using ``RecordFileDetection``
dataset = gcv.data.RecordFileDetection('pikachu_train.rec')
classes = ['pikachu']  # only one foreground class here
image, label = dataset[0]
print('label:', label)
# display image and label
ax = viz.plot_bbox(image,
                   bboxes=label[:, :4],
                   labels=label[:, 4:5],
                   class_names=classes)
plt.show()

#############################################################################################
# Pre-trained models
# -------------------
# Now we can grab a pre-trained model to finetune from. Here we have so many choices from :ref:`gluoncv-model-zoo-detection` Model Zoo.
# Again for demo purpose, we choose a fast SSD network with MobileNet1.0 backbone.
net = gcv.model_zoo.get_model('ssd_512_mobilenet1.0_voc', pretrained=True)

#############################################################################################
# reset network to predict pikachus!
net.reset_class(classes)
# now the output layers that used to map to VOC classes are now reset to distinguish pikachu (and background).
    for data_img, data_label, _ in zip(*batch):
        ids, scores, bboxes, _ = model(data_img.expand_dims(0))
        distil_ids, distil_scores, distil_bboxes, _ = distil_model(
            data_img.expand_dims(0))

        data_label = data_label.expand_dims(0)
        gt_label = data_label[:, :, 4:5]
        gt_box = data_label[:, :, :4]

        # we can change the threshold to display bounding boxes with lower scores
        # smaller training will result in smaller confidence score
        img = inverse_transformation(
            data_img)  # inverse transformation to get image
        viz.plot_bbox(img,
                      gt_box[0],
                      mx.ndarray.ones(gt_box[0].shape[0]),
                      gt_label[0],
                      class_names=dataset.CLASSES)
        viz.plot_bbox(img,
                      bboxes[0],
                      scores[0],
                      ids[0],
                      class_names=dataset.CLASSES,
                      thresh=0.3)
        viz.plot_bbox(img,
                      distil_bboxes[0],
                      distil_scores[0],
                      distil_ids[0],
                      class_names=dataset.CLASSES,
                      thresh=0.3)
        plt.show()