Ejemplo n.º 1
0
def make_dzdx_poly(
    dzdx_Ci_polylike_eqn_: Eq,
    sub_: Dict,
) -> Poly:
    """
    TODO.

    Args:
        TODO
    """
    eta_ = eta.subs(sub_)
    # Bit of a hack - assumes the dzdx ODE has only two "arg" terms
    #  for $\eta=1/4$
    if eta_ == Rational(1, 4):
        dzdx_eqn_ = dzdx_Ci_polylike_eqn_.subs({eta: Rational(1, 4)})
        dzdx_eqn_ = Eq(dzdx_eqn_.lhs.args[0]**2 - dzdx_eqn_.lhs.args[1]**2, 0)
    else:
        dzdx_eqn_ = dzdx_Ci_polylike_eqn_
    return poly(N(dzdx_eqn_.lhs.subs(sub_)), dzdx)
Ejemplo n.º 2
0
def integrate_dzdx(
    gmeq: Eq,
    sub_: Dict,
    n_pts: int = 200,
    xivhat0_: float = 1,
    x_end: float = 0.999,
) -> Tuple[np.ndarray, np.ndarray]:
    r"""
    Generate a topographic profile $h(x)$.

    Achieved by numerically integrating a sequence of $\mathrm{d}z/\mathrm{d}x$
    values at regular $x$ values.
    """
    sub_copy = sub_.copy()
    sub_copy[xivhat_0] = xivhat0_
    eta_ = eta.subs(sub_)
    dzdx_poly_ = make_dzdx_poly(gmeq.dzdx_Ci_polylike_eqn, sub_copy)
    xhat_array = np.linspace(0, x_end, n_pts, endpoint=True)
    dzdxhat_array = [
        find_dzdx_poly_root(dzdx_poly_, xhat_, xivhat0_, eta_=eta_)
        for xhat_ in xhat_array
    ]
    zhat_array = cumtrapz(dzdxhat_array, xhat_array, initial=0)
    return (xhat_array, zhat_array)
Ejemplo n.º 3
0
    def plot_Hetc_contours(
        self,
        sm: SlicingMath,
        grids_: Tuple[Any, Any],
        sub_: Dict,
        do_Ci: bool,
        do_modv: bool = False,
        do_fmt_labels: bool = False,
        do_aspect: bool = True,
        do_rxpx: bool = False,
        pxpz_points=None,
        do_log2H: bool = False,
        do_siggrid: bool = True,
        do_black_contours: bool = False,
        do_grid: bool = True,
        do_at_rxcrit: bool = False,
        contour_nlevels: Optional[Union[int, List, Tuple]] = None,
        contour_range: Tuple[float, float] = (0, 1),
        v_contour_range: Tuple[float, float] = (0, 1),
        contour_values: Optional[List[float]] = None,
        contour_label_locs: Optional[List] = None,
    ) -> str:
        r"""Plot Hamiltonian contours."""
        # Create figure
        rxhat_: float = 0 if do_rxpx else round(float(rxhat.subs(sub_).n()), 4)
        fig_name_elements: Tuple = (
            "Ci" if do_Ci else ("v" if do_modv else "H"),
            "_rslice" if do_rxpx else "_pslice",
            f"_eta{float(eta.subs(sub_).n()):g}",
            f"_Ci{deg(Ci.subs(sub_))}" if do_rxpx else f"_rxhat{rxhat_:g}",
        )
        fig_name: str = ("".join(fig_name_elements)).replace(".", "p")
        fig: Figure = self.create_figure(fig_name, fig_size=(6, 6))
        axes: Axes = plt.gca()
        labels: Tuple[str, str] = ((r"\hat{r}^x", r"\hat{p}_x") if do_rxpx else
                                   (r"\hat{p}_x", r"\hat{p}_z"))
        xlabel, ylabel = [rf"${label_}$" for label_ in labels]
        vars_label = rf"$\left({labels[0]},{labels[1]}\right)$"
        plt.xlabel(xlabel)
        plt.ylabel(ylabel)
        if do_grid:
            plt.grid(":")

        # Generate a grid of H or Ci for a meshgrid of (px,pz) or (rx,px)
        H_grid_ = sm.Ci_lambda(*grids_) if do_Ci else sm.H_lambda(*grids_)
        modv_grid_ = (sm.modv_pxpzhat_lambda(*grids_) if
                      (do_modv and not do_rxpx) else None)
        if do_siggrid:
            gstar_signature_grid_ = np.array(
                grids_[0].shape)  # for i_ in [1,2]]
            gstar_signature_grid_ = np.array([
                sm.gstar_signature_lambda(x_, y_)
                for x_, y_ in zip(grids_[0].flatten(), grids_[1].flatten())
            ]).reshape((grids_[0]).shape)
            gstar_signature_grid_[np.isnan(gstar_signature_grid_)] = 0

        # Axis labeling
        if do_fmt_labels:
            for axis_ in [axes.xaxis, axes.yaxis]:
                axis_.set_major_formatter(ticker.FormatStrFormatter("%0.0e"))

        # Metric signature colour background
        cmap_: LinearSegmentedColormap = plt.get_cmap("PiYG")
        if do_siggrid:
            cf = axes.contourf(*grids_,
                               gstar_signature_grid_,
                               levels=1,
                               cmap=cmap_)
            divider = make_axes_locatable(axes)
            cax = divider.append_axes("top", size="6%", pad=0.4)
            label_levels = np.array([0.25, 0.75])
            # mypy: Incompatible types in assignment
            #        (expression has type "List[str]",
            #       variable has type "Tuple[str, str]")
            tick_labels: Tuple[str, str] = ("mixed: -,+", "positive: +,+")
            cbar = fig.colorbar(
                cf,
                cax=cax,
                orientation="horizontal",
                ticks=label_levels,
                label="metric signature",
            )
            cbar.ax.set_xticklabels(tick_labels)
            cbar.ax.xaxis.set_ticks_position("top")
            if do_aspect:
                axes.set_aspect(1)
            fig.tight_layout()

        y_limit: Tuple[float, float] = axes.get_ylim()

        # beta_crit line
        axes.set_autoscale_on(False)
        tan_beta_crit_: float = np.sqrt(float(eta.subs(sub_)))
        beta_crit_: float = np.round(np.rad2deg(np.arctan(tan_beta_crit_)), 1)
        x_array: Optional[np.ndarray] = None
        y_array: Optional[np.ndarray] = None
        if do_rxpx:
            # rx (+ve)
            x_array = grids_[1][0]
            y_array = (grids_[1][0] * 0 -
                       float(pzhat.subs(sub_)) * tan_beta_crit_)  # px (+ve)
        else:
            x_array = -grids_[1][0] * tan_beta_crit_  # px (+ve)
            y_array = grids_[1][0]  # pz (-ve)
        axes.plot(
            x_array,
            y_array,
            "Red",
            lw=3,
            ls="-",
            label=r"$\beta_\mathrm{c} = $" + rf"{beta_crit_}$\degree$",
        )

        # px,pz on-shell point
        beta_: float = 0
        if pxpz_points is not None and not do_rxpx:
            for i_, (px_, pz_) in enumerate(pxpz_points):
                axes.scatter(px_, pz_, marker="o", s=70, color="k", label=None)
                beta_ = np.round(np.rad2deg(np.arctan(float(-px_ / pz_))), 1)
                beta_label: str = (r"$\beta_0$"
                                   if rxhat.subs(sub_) == 0 else r"$\beta$")
                axes.plot(
                    np.array([0, px_ * 10]),
                    np.array([0, pz_ * 10]),
                    "-.",
                    color="b",
                    label=beta_label + r"$ = $" +
                    rf"{beta_:g}$\degree$" if i_ == 0 and not do_Ci else None,
                )

        # pz=pz_0 constant line
        if pxpz_points is not None:
            for i_, (px_, pz_) in enumerate(pxpz_points):
                axes.plot(
                    np.array([0, px_ * 100]),
                    np.array([pz_, pz_]),
                    ":",
                    lw=2,
                    color="grey",
                    label=r"$\hat{p}_{z} = \hat{p}_{z_0}$"
                    if i_ == 0 else None,
                )
                beta_ = np.round(np.rad2deg(np.arctan(float(-px_ / pz_))), 0)

        cmap_ = plt.get_cmap("Greys_r")
        colors_: Tuple[str] = ("k", )

        # |v| contours
        levels_: Optional[np.ndarray] = None
        if do_modv:
            fmt_modv: Callable = lambda modv_: f"{modv_:g}"
            # levels_ = np.linspace(0,0.5, 51, endpoint=True)
            n_levels_ = (
                contour_nlevels if isinstance(contour_nlevels, int) else
                contour_nlevels[0] if contour_nlevels is not None else 1)
            levels_ = np.linspace(v_contour_range[0],
                                  v_contour_range[1],
                                  n_levels_,
                                  endpoint=True)
            modv_contours_ = axes.contour(*grids_,
                                          modv_grid_,
                                          levels_,
                                          cmap=cmap_)
            # levels_[levels_!=levels_H0p5[0]], linestyles=['solid'],
            # cmap=cmap_ if not do_black_contours else None,
            # colors=colors_ if do_black_contours else None)
            axes.clabel(
                modv_contours_,
                fmt=fmt_modv,
                inline=True,
                colors="0.3",
                fontsize=9,
            )

        # H, Ci contours
        # If we provide specific contour values, assume they are Ci values,
        #   - otherwise, assume we want to contour H
        if contour_values is None:
            # H contours
            levels_H0p5: Optional[np.ndarray] = None
            if not do_log2H:
                n_levels_ = (
                    contour_nlevels if isinstance(contour_nlevels, int) else
                    contour_nlevels if contour_nlevels is not None else 1)
                logging.debug(f"contour_nlevels={contour_nlevels}")
                logging.debug(f"n_levels_={contour_nlevels}")
                levels_ = np.concatenate([
                    np.linspace(0.0, 0.5, n_levels_[0], endpoint=False),
                    np.flip(
                        np.linspace(
                            contour_range[1],
                            0.5,
                            n_levels_[1],
                            endpoint=False,
                        )),
                ])
                levels_H0p5 = np.array([0.5])

                def fmt_H(H_):
                    return rf"{H_:g}"

                def fmt_H0p5(H_):
                    return rf"H={H_:g}"

                manual_location = (np.array([0.6, -0.25])) * np.abs(y_limit[0])
            else:
                n_levels_ = int(contour_range[1] - contour_range[0] + 1)
                n_levels_ = n_levels_ * 2 - 1 if do_rxpx else n_levels_
                levels_ = np.linspace(contour_range[0],
                                      contour_range[1],
                                      n_levels_,
                                      endpoint=True)
                levels_H0p5 = np.array([0])

                def fmt_H_rxpx(H_):
                    H__ = np.round(
                        10**H_ / 2,
                        2 if 10**H_ < 0.5 else (1 if 10**H_ < 5 else 0),
                    )
                    return rf"$H={H__:g}$"

                def fmt_H_pxpz(H_):
                    return rf"$2H=10^{H_:g}$"

                fmt_H = fmt_H_rxpx if do_rxpx else fmt_H_pxpz

                def fmt_H0p5(H):  # type: ignore
                    return r"$H=0.5$"

                manual_location = (0.1, -7)
            levels__ = (levels_H0p5[0] if levels_ is None else
                        levels_[levels_ != levels_H0p5[0]])
            contours_ = axes.contour(
                *grids_,
                np.log10(2 * H_grid_) if do_log2H else H_grid_,
                levels__,
                linestyles=["solid"],
                cmap=cmap_ if not do_black_contours else None,
                colors=colors_ if do_black_contours else None,
            )
            axes.clabel(contours_, inline=True, fmt=fmt_H, fontsize=9)
            contour_ = axes.contour(
                *grids_,
                np.log10(2 * H_grid_) if do_log2H else H_grid_,
                levels_H0p5,
                linewidths=[3],
                cmap=cmap_ if not do_black_contours else None,
                colors=colors_ if do_black_contours else None,
            )
            axes.clabel(
                contour_,
                inline=True,
                fmt=fmt_H0p5,
                fontsize=14,
                manual=[(manual_location[0], manual_location[1])]
                if manual_location is not None else None,
            )
        else:
            # Ci contours
            def fmt_Ci(Ci_):
                return r"$\mathsf{Ci}=$" + f"{Ci_:g}" + r"$\degree$"

            contour_values_ = (np.log10(2 * np.array(contour_values))
                               if do_log2H else np.array(contour_values))
            contours_ = axes.contour(
                *grids_,
                np.log10(2 * H_grid_) if do_log2H else H_grid_,
                contour_values_,
                cmap=cmap_ if not do_black_contours else None,
                colors=colors_ if do_black_contours else None,
            )
            axes.clabel(
                contours_,
                inline=True,
                fmt=fmt_Ci,
                fontsize=12,
                manual=contour_label_locs,
            )

        axes.set_autoscale_on(False)

        # H() or Ci() or v() annotation
        x_: float = 1.25
        if not do_Ci:
            axes.text(
                *[x_, 1.1],
                (r"$|\mathbf{\hat{v}}|$" if do_modv else r"$\mathcal{H}$") +
                vars_label,
                horizontalalignment="center",
                verticalalignment="center",
                transform=axes.transAxes,
                fontsize=18,
                color="k",
            )
            Ci_: float = Ci.subs(sub_)
            axes.text(
                *[x_, 0.91],
                r"$\mathsf{Ci}=$" + rf"${deg(Ci_)}\degree$",
                horizontalalignment="center",
                verticalalignment="center",
                transform=axes.transAxes,
                fontsize=16,
                color="k",
            )
        else:
            axes.text(
                *[x_, 1.0],
                r"$\mathsf{Ci}$" + vars_label,
                horizontalalignment="center",
                verticalalignment="center",
                transform=axes.transAxes,
                fontsize=18,
                color="k",
            )

        # eta annotation
        eta_: float = eta.subs(sub_)
        axes.text(
            *[x_, 0.8],
            rf"$\eta={eta_}$",
            horizontalalignment="center",
            verticalalignment="center",
            transform=axes.transAxes,
            fontsize=16,
            color="k",
        )

        # pz or rx annotation
        label_: Optional[str] = None
        val_: Optional[float] = None
        if do_rxpx:
            label_ = r"$\hat{p}_{z_0}=$"
            val_ = round(pzhat.subs(sub_), 1)
        else:
            label_ = (r"$\hat{r}^x_{\mathrm{crit}}=$"
                      if do_at_rxcrit else r"$\hat{r}^x=$")
            val_ = round(rxhat.subs(sub_), 4 if do_at_rxcrit else 4)
            x_ += 0.01 if do_at_rxcrit else 0.0
        axes.text(
            *[x_, 0.68],
            label_ + rf"${val_}$",
            transform=axes.transAxes,
            horizontalalignment="center",
            verticalalignment="center",
            fontsize=16,
            color="k",
        )

        axes.legend(loc=[1.07, 0.29], fontsize=15, framealpha=0)
        return fig_name
Ejemplo n.º 4
0
    def plot_modv_slice(
        self,
        sm: SlicingMath,
        sub_: Dict,
        psub_: Dict,
        do_at_rxcrit: bool = False,
    ) -> str:
        r"""Plot :math`|v|` slice."""
        rxhat_: float = round(float(rxhat.subs(psub_).n()),
                              4 if do_at_rxcrit else 4)
        fig_name_elements: Tuple = (
            "v_pz_H0p5",
            f"_eta{float(eta.subs(sub_).n()):g}",
            f"_Ci{deg(Ci.subs(sub_))}",
            f"_rxhat{rxhat_:g}",
        )
        fig_name: str = ("".join(fig_name_elements)).replace(".", "p")
        _ = self.create_figure(fig_name, fig_size=(6, 5))
        axes: Axes = plt.gca()

        pxhat_eqn_: Eq = sm.pxhatsqrd_Ci_polylike_eqn(sub_,
                                                      pzhat)  # .subs(sub_)
        pxhat_poly_: Poly = poly(pxhat_eqn_.lhs.subs(psub_).n(), pxhat)

        pzhat0_: float = float(sm.pzhat_lambda(sub_, 0, 1).n())

        # For H=1/2
        pzhat_array: np.ndarray = np.flipud(
            np.linspace(
                -30,
                0,
                31,
                endpoint=bool(rxhat.subs(psub_) < 0.95 and eta.subs(sub_) < 1),
            ))
        pxhat_array: np.ndarray = np.array([
            float(
                px_value(
                    rxhat.subs(psub_),
                    pzhat_,
                    pxhat_poly_,
                    px_var_=pxhat,
                    pz_var_=pzhat,
                )) for pzhat_ in pzhat_array
        ])

        modp_array: np.ndarray = np.sqrt(pxhat_array**2 + pzhat_array**2)
        modv_array: np.ndarray = np.array([
            sm.modv_pxpzhat_lambda(pxhat_, pzhat_)
            for pxhat_, pzhat_ in zip(pxhat_array, pzhat_array)
        ])
        projv_array: np.ndarray = modv_array * np.cos(
            np.arctan(-pxhat_array / pzhat_array))

        plt.xlim(min(pzhat_array), max(pzhat_array))
        plt.ylim(0, max(modv_array) * 1.05)
        axes.set_autoscale_on(False)

        plt.plot(
            pzhat_array,
            modv_array,
            "o-",
            color="k",
            ms=3,
            label=r"$|\mathbf{\hat{v}}|$",
        )
        plt.plot(
            pzhat_array,
            projv_array,
            "-",
            color="r",
            ms=3,
            label=r"$|\mathbf{\hat{v}}|\cos\beta$",
        )
        plt.plot(
            pzhat_array,
            (1 / modp_array),
            "-",
            color="b",
            ms=3,
            label=r"$1/|\mathbf{\hat{p}}|$",
        )
        plt.plot(
            [pzhat0_, pzhat0_],
            [0, max(modv_array) * 1.05],
            ":",
            color="k",
            label=r"$\hat{p}_z = \hat{p}_{z_0}$",
        )

        plt.legend(loc="lower left")
        plt.grid("on")
        plt.ylabel(r"$|\mathbf{\hat{v}}|$  " +
                   r"or  $|\mathbf{\hat{v}}|\cos\beta$  " +
                   r"or  $1/|\mathbf{\hat{p}}|$")
        plt.xlabel(r"$\hat{p}_z\left(H=\frac{1}{2}\right)$")

        # Annotations
        x_: float = 1.19
        r_label_: str = (r"$\hat{r}^x_{\mathrm{crit}}=$"
                         if do_at_rxcrit else r"$\hat{r}^x=$")
        r_value_: float = round(rxhat.subs(psub_), 4 if do_at_rxcrit else 4)
        labels: Tuple = (
            r"$\mathcal{H}=\frac{1}{2}$",
            r"$\mathbf{\hat{p}}(\mathbf{\hat{v}})=1$",
            rf"$\eta={eta.subs(sub_)}$",
            r"$\mathsf{Ci}=$" + rf"${deg(Ci.subs(sub_))}\degree$",
            r_label_ + rf"${r_value_}$",
        )
        for i_, label_ in enumerate(labels):
            plt.text(
                *(x_, 0.9 - i_ * 0.15),
                label_,
                fontsize=16,
                color="k",
                horizontalalignment="center",
                verticalalignment="center",
                transform=axes.transAxes,
            )
        return fig_name
Ejemplo n.º 5
0
    def plot_dHdp_slice(
        self,
        sm: SlicingMath,
        sub_: Dict,
        psub_: Dict,
        pxhat_: float,
        do_detHessian: bool = False,
        do_at_rxcrit: bool = False,
    ) -> str:
        r"""Plot :math`dH/dp` slice."""
        rxhat_: float = round(float(rxhat.subs(psub_).n()),
                              4 if do_at_rxcrit else 4)
        fig_name_elements: Tuple = (
            "detHessian" if do_detHessian else "d2Hdpz2"
            f"_eta{float(eta.subs(sub_).n()):g}",
            f"_Ci{deg(Ci.subs(sub_))}",
            f"_rxhat{rxhat_:g}",
        )
        fig_name: str = ("".join(fig_name_elements)).replace(".", "p")
        _ = self.create_figure(fig_name, fig_size=(6, 5))
        axes: Axes = plt.gca()

        pzhat0_ = float(sm.pzhat_lambda(sub_, 0, 1).n())
        x_array: np.ndarray = np.flipud(
            np.linspace(
                -30,
                0,
                301,
                endpoint=bool(rxhat.subs(psub_) < 0.95 and eta.subs(sub_) < 1),
            ))
        y_array: np.ndarray = np.array(None)
        if do_detHessian:
            y_array = np.array([
                sm.detHessianSqrd_lambda(pxhat_, pzhat_) for pzhat_ in x_array
            ])
        else:
            y_array = np.array(
                [sm.d2Hdpzhat2_lambda(pxhat_, pzhat_) for pzhat_ in x_array])

        cmap_: LinearSegmentedColormap = plt.get_cmap("PiYG")
        y_label_: str = (r"$\det\left(\mathrm{Hessian}\right)$"
                         if do_detHessian else
                         r"${\partial^2\mathcal{H}}/{\partial\hat{p}_z^2}$")
        # l_label_ = r'$\det\left(\text{Hessian}\right)$' if do_detH \
        #       else r'$\frac{\partial^2\mathcal{H}}{\partial\hat{p}_z^2}$'
        # font_size_ = 16 if not do_detH else None
        plt.plot(x_array, y_array, "-", color="k", ms=3)  # , label=l_label_)
        axes.fill_between(
            x_array,
            y_array,
            y2=0,
            where=y_array >= 0,
            interpolate=True,
            color=cmap_(0.75),
        )
        axes.fill_between(
            x_array,
            y_array,
            y2=0,
            where=y_array <= 0,
            interpolate=True,
            color=cmap_(0.25),
        )
        axes.scatter(pzhat0_, 0, marker="o", s=40, color="k", label=None)

        # plt.legend(loc='center left', fontsize=font_size_)
        plt.grid("on")
        plt.ylabel(y_label_)
        plt.xlabel(r"$\hat{p}_z$")
        # plt.xlabel(r'$\hat{p}_z'+rf'\,\,|\,\,p_x={round(pxhat_,2)}$')

        # Annotations
        x_: float = 1.19
        r_label_: str = (r"$\hat{r}^x_{\mathrm{crit}}=$"
                         if do_at_rxcrit else r"$\hat{r}^x=$")
        r_value_: float = round(rxhat.subs(psub_), 4 if do_at_rxcrit else 4)
        labels: Tuple = (
            rf"$\eta={eta.subs(sub_)}$",
            r"$\mathsf{Ci}=$" + rf"${deg(Ci.subs(sub_))}\degree$",
            r"$\hat{p}_x=$" + rf"${round(pxhat_,2)}$",
            r_label_ + rf"${r_value_}$",
        )
        for i_, label_ in enumerate(labels):
            plt.text(
                *(x_, 0.9 - i_ * 0.15),
                label_,
                fontsize=16,
                color="k",
                horizontalalignment="center",
                verticalalignment="center",
                transform=axes.transAxes,
            )

        return fig_name