Ejemplo n.º 1
0
def test_exceptions():
    ddir = os.path.join("data", "testdata", "geonet")
    homedir = pkg_resources.resource_filename("gmprocess", ddir)
    datafile_v2 = os.path.join(homedir, "us1000778i",
                               "20161113_110259_WTMC_20.V2A")
    stream_v2 = read_geonet(datafile_v2)[0]
    # Check for origin Error
    passed = True
    try:
        m = MetricsController("pga",
                              "radial_transverse",
                              stream_v2,
                              config=config)
    except PGMException as e:
        passed = False
    assert passed == False

    # -------- Horizontal Channel Errors -----------
    # Check for horizontal passthrough gm
    st2 = stream_v2.select(component="[N1]")
    st3 = stream_v2.select(component="Z")
    st1 = StationStream([st2[0], st3[0]])
    passed = True
    m = MetricsController("pga", "geometric_mean", st1, config=config)
    pgm = m.pgms
    result = pgm["Result"].tolist()[0]
    assert np.isnan(result)
    # Check for horizontal passthrough rotd50
    m = MetricsController("pga", "rotd50", st1, config=config)
    pgm = m.pgms
    result = pgm["Result"].tolist()[0]
    assert np.isnan(result)
    # Check for horizontal passthrough gmrotd50
    m = MetricsController("pga", "gmrotd50", st1, config=config)
    pgm = m.pgms
    result = pgm["Result"].tolist()[0]
    assert np.isnan(result)
    # No horizontal channels
    try:
        m = MetricsController("sa3.0", "channels", st3, config=config)
    except PGMException as e:
        passed = False
    assert passed == False
def test_exceptions():
    ddir = os.path.join('data', 'testdata', 'geonet')
    homedir = pkg_resources.resource_filename('gmprocess', ddir)
    datafile_v2 = os.path.join(homedir, 'us1000778i',
                               '20161113_110259_WTMC_20.V2A')
    stream_v2 = read_geonet(datafile_v2)[0]
    # Check for origin Error
    passed = True
    try:
        m = MetricsController('pga',
                              'radial_transverse',
                              stream_v2,
                              config=config)
    except PGMException as e:
        passed = False
    assert passed == False

    # -------- Horizontal Channel Errors -----------
    # Check for horizontal passthrough gm
    st2 = stream_v2.select(component='[N1]')
    st3 = stream_v2.select(component='Z')
    st1 = StationStream([st2[0], st3[0]])
    passed = True
    m = MetricsController('pga', 'geometric_mean', st1, config=config)
    pgm = m.pgms
    result = pgm['Result'].tolist()[0]
    assert np.isnan(result)
    # Check for horizontal passthrough rotd50
    m = MetricsController('pga', 'rotd50', st1, config=config)
    pgm = m.pgms
    result = pgm['Result'].tolist()[0]
    assert np.isnan(result)
    # Check for horizontal passthrough gmrotd50
    m = MetricsController('pga', 'gmrotd50', st1, config=config)
    pgm = m.pgms
    result = pgm['Result'].tolist()[0]
    assert np.isnan(result)
    # No horizontal channels
    try:
        m = MetricsController('sa3.0', 'channels', st3, config=config)
    except PGMException as e:
        passed = False
    assert passed == False
def test_end_to_end():
    datafiles, _ = read_data_dir('geonet', 'us1000778i',
                                 '20161113_110259_WTMC_20.V2A')
    datafile = datafiles[0]

    target_imcs = np.sort(
        np.asarray([
            'GREATER_OF_TWO_HORIZONTALS', 'H1', 'H2', 'Z', 'ROTD50.0',
            'ROTD100.0'
        ]))
    target_imts = np.sort(np.asarray(['SA(1.0)', 'PGA', 'PGV']))
    stream = read_geonet(datafile)[0]
    input_imcs = [
        'greater_of_two_horizontals', 'channels', 'rotd50', 'rotd100',
        'invalid'
    ]
    input_imts = ['sa1.0', 'PGA', 'pgv', 'invalid']
    m = MetricsController(input_imts, input_imcs, stream)
    test_pgms = [('PGV', 'ROTD(100.0)', 114.24894584734818),
                 ('PGV', 'ROTD(50.0)', 81.55436750525355),
                 ('PGV', 'Z', 37.47740000000001),
                 ('PGV', 'H1', 100.81460000000004), ('PGV', 'H2', 68.4354),
                 ('PGV', 'GREATER_OF_TWO_HORIZONTALS', 100.81460000000004),
                 ('PGA', 'ROTD(100.0)', 100.73875535385548),
                 ('PGA', 'ROTD(50.0)', 91.40178541935455),
                 ('PGA', 'Z', 183.7722361866693),
                 ('PGA', 'H1', 99.24999872535474),
                 ('PGA', 'H2', 81.23467239067368),
                 ('PGA', 'GREATER_OF_TWO_HORIZONTALS', 99.24999872535474),
                 ('SA(1.0)', 'ROTD(100.0)', 146.9023350124098),
                 ('SA(1.0)', 'ROTD(50.0)', 106.03202302692158),
                 ('SA(1.0)', 'Z', 27.74118995438756),
                 ('SA(1.0)', 'H1', 136.25041187387063),
                 ('SA(1.0)', 'H2', 84.69296738413021),
                 ('SA(1.0)', 'GREATER_OF_TWO_HORIZONTALS', 136.25041187387063)]
    pgms = m.pgms
    assert len(pgms['IMT'].tolist()) == len(test_pgms)
    for target in test_pgms:
        target_imt = target[0]
        target_imc = target[1]
        value = target[2]
        sub_imt = pgms.loc[pgms['IMT'] == target_imt]
        df = sub_imt.loc[sub_imt['IMC'] == target_imc]
        assert len(df['IMT'].tolist()) == 1

        np.testing.assert_array_almost_equal(df['Result'].tolist()[0],
                                             value,
                                             decimal=10)
Ejemplo n.º 4
0
    def from_config(cls, stream, config=None, event=None):
        """
        Args:
            stream (obspy.core.stream.Stream): Strong motion timeseries
                for one station.
            event (ScalarEvent):
                Object containing latitude, longitude, depth, and magnitude.
            config (dictionary): Configuration dictionary.

        Note:
            Assumes a processed stream with units of gal (1 cm/s^2).
            No processing is done by this class.
        """
        if config is None:
            config = get_config()
        station = cls()

        damping = config['metrics']['sa']['damping']
        smoothing = config['metrics']['fas']['smoothing']
        bandwidth = config['metrics']['fas']['bandwidth']

        station._damping = damping
        station._smoothing = smoothing
        station._bandwidth = bandwidth
        station._stream = stream
        station.event = event
        station.set_metadata()

        metrics = MetricsController.from_config(stream,
                                                config=config,
                                                event=event)

        pgms = metrics.pgms
        if pgms is None:
            station._components = metrics.imcs
            station._imts = metrics.imts
            station.pgms = pd.DataFrame.from_dict({
                'IMT': [],
                'IMC': [],
                'Result': []
            })
        else:
            station._components = set(pgms['IMC'].tolist())
            station._imts = set(pgms['IMT'].tolist())
            station.pgms = pgms
        station._summary = station.get_summary()
        return station
Ejemplo n.º 5
0
def test_end_to_end():
    datafiles, _ = read_data_dir("geonet", "us1000778i",
                                 "20161113_110259_WTMC_20.V2A")
    datafile = datafiles[0]

    stream = read_geonet(datafile)[0]
    input_imcs = [
        "greater_of_two_horizontals",
        "channels",
        "rotd50",
        "rotd100",
        "invalid",
    ]
    input_imts = ["sa1.0", "PGA", "pgv", "invalid"]
    m = MetricsController(input_imts, input_imcs, stream, config=config)
    test_pgms = [
        ("PGV", "ROTD(100.0)", 114.24894584734818),
        ("PGV", "ROTD(50.0)", 81.55436750525355),
        ("PGV", "Z", 37.47740000000001),
        ("PGV", "H1", 100.81460000000004),
        ("PGV", "H2", 68.4354),
        ("PGV", "GREATER_OF_TWO_HORIZONTALS", 100.81460000000004),
        ("PGA", "ROTD(100.0)", 100.73875535385548),
        ("PGA", "ROTD(50.0)", 91.40178541935455),
        ("PGA", "Z", 183.7722361866693),
        ("PGA", "H1", 99.24999872535474),
        ("PGA", "H2", 81.23467239067368),
        ("PGA", "GREATER_OF_TWO_HORIZONTALS", 99.24999872535474),
        ("SA(1.000)", "ROTD(100.0)", 146.9023350124098),
        ("SA(1.000)", "ROTD(50.0)", 106.03202302692158),
        ("SA(1.000)", "Z", 27.74118995438756),
        ("SA(1.000)", "H1", 136.25041187387063),
        ("SA(1.000)", "H2", 84.69296738413021),
        ("SA(1.000)", "GREATER_OF_TWO_HORIZONTALS", 136.25041187387063),
    ]
    pgms = m.pgms
    assert len(pgms) == len(test_pgms)
    for target in test_pgms:
        target_imt = target[0]
        target_imc = target[1]
        value = target[2]
        df = pgms.loc[target_imt, target_imc]
        assert len(df) == 1

        np.testing.assert_array_almost_equal(df["Result"], value, decimal=10)
    def from_config(cls, stream, config=None, event=None):
        """
        Args:
            stream (obspy.core.stream.Stream): Strong motion timeseries
                for one station.
            event (ScalarEvent):
                Object containing latitude, longitude, depth, and magnitude.
            config (dictionary): Configuration dictionary.

        Note:
            Assumes a processed stream with units of gal (1 cm/s^2).
            No processing is done by this class.
        """
        if config is None:
            config = get_config()
        station = cls()

        damping = config['metrics']['sa']['damping']
        smoothing = config['metrics']['fas']['smoothing']
        bandwidth = config['metrics']['fas']['bandwidth']

        station._damping = damping
        station._smoothing = smoothing
        station._bandwidth = bandwidth
        station._stream = stream
        station.event = event
        station.set_metadata()
        metrics = MetricsController.from_config(stream, config=config,
                                                event=event)
        pgms = metrics.pgms
        if pgms is None:
            station._components = metrics.imcs
            station._imts = metrics.imts
            station.pgms = pd.DataFrame.from_dict({
                'IMT': [],
                'IMC': [],
                'Result': []
            })
        else:
            station._components = set(pgms['IMC'].tolist())
            station._imts = set(pgms['IMT'].tolist())
            station.pgms = pgms
        station._summary = station.get_summary()
        return station
Ejemplo n.º 7
0
    def from_stream(cls,
                    stream,
                    components,
                    imts,
                    event=None,
                    damping=None,
                    smoothing=None,
                    bandwidth=None,
                    config=None):
        """
        Args:
            stream (obspy.core.stream.Stream): Strong motion timeseries
                for one station.
            components (list): List of requested components (str).
            imts (list): List of requested imts (str).
            event (ScalarEvent):
                Origin/magnitude for the event containing time, latitude,
                longitude, depth, and magnitude.
            damping (float): Damping of oscillator. Default is None.
            smoothing (float): Smoothing method. Default is None.
            bandwidth (float): Bandwidth of smoothing. Default is None.
            config (dictionary): Configuration dictionary.

        Note:
            Assumes a processed stream with units of gal (1 cm/s^2).
            No processing is done by this class.
        """
        if config is None:
            config = get_config()
        station = cls()
        imts = np.sort(imts)
        components = np.sort(components)

        if damping is None:
            damping = config['metrics']['sa']['damping']
        if smoothing is None:
            smoothing = config['metrics']['fas']['smoothing']
        if bandwidth is None:
            bandwidth = config['metrics']['fas']['bandwidth']

        station._damping = damping
        station._smoothing = smoothing
        station._bandwidth = bandwidth
        station._stream = stream
        station.event = event
        station.set_metadata()
        metrics = MetricsController(imts,
                                    components,
                                    stream,
                                    bandwidth=bandwidth,
                                    damping=damping,
                                    event=event,
                                    smooth_type=smoothing)
        pgms = metrics.pgms
        if pgms is None:
            station._components = metrics.imcs
            station._imts = metrics.imts
            station.pgms = pd.DataFrame.from_dict({
                'IMT': [],
                'IMC': [],
                'Result': []
            })
        else:
            station._components = set(pgms['IMC'].tolist())
            station._imts = set(pgms['IMT'].tolist())
            station.pgms = pgms
        station._summary = station.get_summary()
        return station
Ejemplo n.º 8
0
def test_controller():
    datafiles, event = read_data_dir('geonet', 'us1000778i',
                                     '20161113_110259_WTMC_20.V2A')
    datafile = datafiles[0]
    input_imts = [
        'pgv', 'pga', 'sa2', 'sa1.0', 'sa0.3', 'fas2', 'fas1.0', 'fas0.3',
        'arias', 'invalid'
    ]
    input_imcs = [
        'rotd50', 'rotd100.0', 'gmrotd50', 'gmrotd100.0', 'radial_transverse',
        'geometric_mean', 'arithmetic_mean', 'channels',
        'greater_of_two_horizontals', 'invalid', 'quadratic_mean'
    ]
    stream_v2 = read_geonet(datafile)[0]

    # Testing for acceleration --------------------------
    m1 = MetricsController(input_imts, input_imcs, stream_v2, event=event)
    pgms = m1.pgms

    # testing for pga, pgv, sa
    target_imcs = [
        'ROTD(50.0)', 'ROTD(100.0)', 'GMROTD(50.0)', 'GMROTD(100.0)', 'HNR',
        'HNT', 'GEOMETRIC_MEAN', 'ARITHMETIC_MEAN', 'H1', 'H2', 'Z',
        'GREATER_OF_TWO_HORIZONTALS', 'QUADRATIC_MEAN'
    ]
    for col in ['PGA', 'PGV', 'SA(1.000)', 'SA(2.000)', 'SA(0.300)']:
        imt = pgms.loc[pgms['IMT'] == col]
        imcs = imt['IMC'].tolist()
        assert len(imcs) == len(target_imcs)
        np.testing.assert_array_equal(np.sort(imcs), np.sort(target_imcs))

    # testing for fas
    for col in ['FAS(1.000)', 'FAS(2.000)', 'FAS(0.300)']:
        imt = pgms.loc[pgms['IMT'] == col]
        imcs = imt['IMC'].tolist()
        assert len(imcs) == 3
        np.testing.assert_array_equal(
            np.sort(imcs),
            ['ARITHMETIC_MEAN', 'GEOMETRIC_MEAN', 'QUADRATIC_MEAN'])

    # testing for arias
    imt = pgms.loc[pgms['IMT'] == 'ARIAS']
    imcs = imt['IMC'].tolist()
    assert len(imcs) == 1
    np.testing.assert_array_equal(np.sort(imcs), ['ARITHMETIC_MEAN'])
    _validate_steps(m1.step_sets, 'acc')

    # Testing for Velocity --------------------------
    for trace in stream_v2:
        trace.stats.standard.units = 'vel'
    m = MetricsController(input_imts, input_imcs, stream_v2, event=event)
    pgms = m.pgms

    # testing for pga, pgv, sa
    target_imcs = [
        'ROTD(50.0)', 'ROTD(100.0)', 'GMROTD(50.0)', 'GMROTD(100.0)', 'HNR',
        'HNT', 'GEOMETRIC_MEAN', 'ARITHMETIC_MEAN', 'QUADRATIC_MEAN', 'H1',
        'H2', 'Z', 'GREATER_OF_TWO_HORIZONTALS'
    ]
    for col in ['PGA', 'PGV', 'SA(1.000)', 'SA(2.000)', 'SA(0.300)']:
        imt = pgms.loc[pgms['IMT'] == col]
        imcs = imt['IMC'].tolist()
        assert len(imcs) == len(target_imcs)
        np.testing.assert_array_equal(np.sort(imcs), np.sort(target_imcs))

    # testing for fas
    for col in ['FAS(1.000)', 'FAS(2.000)', 'FAS(0.300)']:
        imt = pgms.loc[pgms['IMT'] == col]
        imcs = imt['IMC'].tolist()
        assert len(imcs) == 3
        np.testing.assert_array_equal(
            np.sort(imcs),
            ['ARITHMETIC_MEAN', 'GEOMETRIC_MEAN', 'QUADRATIC_MEAN'])

    # testing for arias
    imt = pgms.loc[pgms['IMT'] == 'ARIAS']
    imcs = imt['IMC'].tolist()
    assert len(imcs) == 1
    np.testing.assert_array_equal(np.sort(imcs), ['ARITHMETIC_MEAN'])
    _validate_steps(m.step_sets, 'vel')
Ejemplo n.º 9
0
    def from_stream(cls,
                    stream,
                    components,
                    imts,
                    event=None,
                    damping=None,
                    smoothing=None,
                    bandwidth=None,
                    allow_nans=None,
                    config=None,
                    calc_waveform_metrics=True,
                    calc_station_metrics=True,
                    rupture=None,
                    vs30_grids=None):
        """
        Args:
            stream (obspy.core.stream.Stream): Strong motion timeseries
                for one station.
            components (list): List of requested components (str).
            imts (list): List of requested imts (str).
            event (ScalarEvent):
                Origin/magnitude for the event containing time, latitude,
                longitude, depth, and magnitude.
            damping (float): Damping of oscillator. Default is None.
            smoothing (float): Smoothing method. Default is None.
            bandwidth (float): Bandwidth of smoothing. Default is None.
            config (dictionary): Configuration dictionary.
            calc_waveform_metrics (bool):
                Whether to calculate waveform metrics. Default is True.
            calc_station_metrics (bool):
                Whether to calculate station metrics. Default is True.
            rupture (PointRupture or QuadRupture):
                impactutils rupture object. Default is None.
            vs30_grids (dict):
                A dictionary containing the vs30 grid files, names, and
                descriptions (see config).
        Note:
            Assumes a processed stream with units of gal (1 cm/s^2).
            No processing is done by this class.
        """
        if config is None:
            config = get_config()
        station = cls()
        imts = np.sort(imts)
        components = np.sort(components)

        if damping is None:
            damping = config['metrics']['sa']['damping']
        if smoothing is None:
            smoothing = config['metrics']['fas']['smoothing']
        if bandwidth is None:
            bandwidth = config['metrics']['fas']['bandwidth']
        if allow_nans is None:
            allow_nans = config['metrics']['fas']['allow_nans']

        station._damping = damping
        station._smoothing = smoothing
        station._bandwidth = bandwidth
        station._stream = stream
        station.event = event
        station.set_metadata()

        if stream.passed and calc_waveform_metrics:
            metrics = MetricsController(imts,
                                        components,
                                        stream,
                                        bandwidth=bandwidth,
                                        allow_nans=allow_nans,
                                        damping=damping,
                                        event=event,
                                        smooth_type=smoothing)
            station.channel_dict = metrics.channel_dict.copy()
            pgms = metrics.pgms

            if pgms.empty:
                station._components = metrics.imcs
                station._imts = metrics.imts
                station.pgms = pd.DataFrame.from_dict({
                    'IMT': [],
                    'IMC': [],
                    'Result': []
                })
            else:
                station._components = set(pgms.index.get_level_values('IMC'))
                station._imts = set(pgms.index.get_level_values('IMT'))
                station.pgms = pgms
        if calc_station_metrics:
            station.compute_station_metrics(rupture, vs30_grids)
        return station
Ejemplo n.º 10
0
    def from_config(cls,
                    stream,
                    config=None,
                    event=None,
                    calc_waveform_metrics=True,
                    calc_station_metrics=True,
                    rupture=None,
                    vs30_grids=None):
        """
        Args:
            stream (obspy.core.stream.Stream): Strong motion timeseries
                for one station.
            config (dictionary): Configuration dictionary.
            event (ScalarEvent):
                Object containing latitude, longitude, depth, and magnitude.
            calc_waveform_metrics (bool):
                Whether to calculate waveform metrics. Default is True.
            calc_station_metrics (bool):
                Whether to calculate station metrics. Default is True.
            rupture (PointRupture or QuadRupture):
                impactutils rupture object. Default is None.
            vs30_grids (dict):
                A dictionary containing the vs30 grid files, names, and
                descriptions (see config).
        Note:
            Assumes a processed stream with units of gal (1 cm/s^2).
            No processing is done by this class.
        """
        if config is None:
            config = get_config()
        station = cls()

        damping = config['metrics']['sa']['damping']
        smoothing = config['metrics']['fas']['smoothing']
        bandwidth = config['metrics']['fas']['bandwidth']

        station._damping = damping
        station._smoothing = smoothing
        station._bandwidth = bandwidth
        station._stream = stream
        station.event = event
        station.set_metadata()

        if stream.passed and calc_waveform_metrics:
            metrics = MetricsController.from_config(stream,
                                                    config=config,
                                                    event=event)

            station.channel_dict = metrics.channel_dict.copy()

            pgms = metrics.pgms
            if pgms is None:
                station._components = metrics.imcs
                station._imts = metrics.imts
                station.pgms = pd.DataFrame.from_dict({
                    'IMT': [],
                    'IMC': [],
                    'Result': []
                })
            else:
                station._components = set(pgms.index.get_level_values('IMC'))
                station._imts = set(pgms.index.get_level_values('IMT'))
                station.pgms = pgms
        if calc_station_metrics:
            station.compute_station_metrics(rupture, vs30_grids)

        return station
Ejemplo n.º 11
0
def test_controller():
    datafiles, event = read_data_dir("geonet", "us1000778i",
                                     "20161113_110259_WTMC_20.V2A")
    datafile = datafiles[0]
    input_imts = [
        "pgv",
        "pga",
        "sa2",
        "sa1.0",
        "sa0.3",
        "fas2",
        "fas1.0",
        "fas0.3",
        "arias",
        "invalid",
    ]
    input_imcs = [
        "rotd50",
        "rotd100.0",
        "gmrotd50",
        "gmrotd100.0",
        "radial_transverse",
        "geometric_mean",
        "arithmetic_mean",
        "channels",
        "greater_of_two_horizontals",
        "invalid",
        "quadratic_mean",
    ]
    stream_v2 = read_geonet(datafile)[0]

    # Testing for acceleration --------------------------
    m1 = MetricsController(input_imts,
                           input_imcs,
                           stream_v2,
                           event=event,
                           config=config)
    pgms = m1.pgms

    # testing for pga, pgv, sa
    target_imcs = [
        "ROTD(50.0)",
        "ROTD(100.0)",
        "GMROTD(50.0)",
        "GMROTD(100.0)",
        "HNR",
        "HNT",
        "GEOMETRIC_MEAN",
        "ARITHMETIC_MEAN",
        "H1",
        "H2",
        "Z",
        "GREATER_OF_TWO_HORIZONTALS",
        "QUADRATIC_MEAN",
    ]
    for col in ["PGA", "PGV", "SA(1.000)", "SA(2.000)", "SA(0.300)"]:
        imcs = pgms.loc[col].index.tolist()
        assert len(imcs) == len(target_imcs)
        np.testing.assert_array_equal(np.sort(imcs), np.sort(target_imcs))

    # testing for fas
    for col in ["FAS(1.000)", "FAS(2.000)", "FAS(0.300)"]:
        imcs = pgms.loc[col].index.tolist()
        assert len(imcs) == 9
        np.testing.assert_array_equal(
            np.sort(imcs),
            [
                "ARITHMETIC_MEAN",
                "GEOMETRIC_MEAN",
                "GREATER_OF_TWO_HORIZONTALS",
                "H1",
                "H2",
                "HNR",
                "HNT",
                "QUADRATIC_MEAN",
                "Z",
            ],
        )

    # testing for arias
    imcs = pgms.loc["ARIAS"].index.tolist()
    assert len(imcs) == 9
    np.testing.assert_array_equal(
        np.sort(imcs),
        [
            "ARITHMETIC_MEAN",
            "GEOMETRIC_MEAN",
            "GREATER_OF_TWO_HORIZONTALS",
            "H1",
            "H2",
            "HNR",
            "HNT",
            "QUADRATIC_MEAN",
            "Z",
        ],
    )
    _validate_steps(m1.step_sets, "acc")

    # Testing for Velocity --------------------------
    for trace in stream_v2:
        trace.stats.standard.units = "vel"
    m = MetricsController(input_imts,
                          input_imcs,
                          stream_v2,
                          event=event,
                          config=config)
    pgms = m.pgms

    # testing for pga, pgv, sa
    target_imcs = [
        "ROTD(50.0)",
        "ROTD(100.0)",
        "GMROTD(50.0)",
        "GMROTD(100.0)",
        "HNR",
        "HNT",
        "GEOMETRIC_MEAN",
        "ARITHMETIC_MEAN",
        "QUADRATIC_MEAN",
        "H1",
        "H2",
        "Z",
        "GREATER_OF_TWO_HORIZONTALS",
    ]
    for col in ["PGA", "PGV", "SA(1.000)", "SA(2.000)", "SA(0.300)"]:
        imcs = pgms.loc[col].index.tolist()
        assert len(imcs) == len(target_imcs)
        np.testing.assert_array_equal(np.sort(imcs), np.sort(target_imcs))

    # testing for fas
    for col in ["FAS(1.000)", "FAS(2.000)", "FAS(0.300)"]:
        imcs = pgms.loc[col].index.tolist()
        assert len(imcs) == 9
        np.testing.assert_array_equal(
            np.sort(imcs),
            [
                "ARITHMETIC_MEAN",
                "GEOMETRIC_MEAN",
                "GREATER_OF_TWO_HORIZONTALS",
                "H1",
                "H2",
                "HNR",
                "HNT",
                "QUADRATIC_MEAN",
                "Z",
            ],
        )

    # testing for arias
    imcs = pgms.loc["ARIAS"].index.tolist()
    assert len(imcs) == 9
    np.testing.assert_array_equal(
        np.sort(imcs),
        [
            "ARITHMETIC_MEAN",
            "GEOMETRIC_MEAN",
            "GREATER_OF_TWO_HORIZONTALS",
            "H1",
            "H2",
            "HNR",
            "HNT",
            "QUADRATIC_MEAN",
            "Z",
        ],
    )
    _validate_steps(m.step_sets, "vel")