def normalized_sample(self, W):
        """ Normalized sampling without division.

        Args:
          W: a set of weights from which to sample.

        Returns: an integer in [0,len(W)] corresponding to the index sampled.
    """
        t = gmpy2.fsum(W)  # compute total weight
        C = [gmpy2.fsum(W[0:i + 1])
             for i in range(0, len(W))]  # compute cumulative weights

        # Determine the maximum power of two for sampling
        i_max = 0
        while gmpy2.exp2(i_max) > t:
            i_max -= 1
        while gmpy2.exp2(i_max) <= t:
            i_max += 1
        # sample a random number
        s = gmpy2.exp2(i_max + 1)
        while s > t:
            s = self.get_random_value(i_max, self.context.precision)
        # return the element that matches the sampled index
        for i in range(0, len(W)):
            if C[i] >= s:
                return i
Ejemplo n.º 2
0
def hessian(x, y, t_1, t_2):
    psigmoid = [sigmoid(i, t_1, t_2) for i in x]
    u = [p * (1 - p) * q * q for (p, q) in zip(psigmoid, x)]
    d1 = gmpy2.fsum(u)

    v = [p * (1 - p) * q for (p, q) in zip(psigmoid, x)]
    d2 = gmpy2.fsum(v)

    w = [p * (1 - p) for p in psigmoid]
    d3 = gmpy2.fsum(w)

    H = np.array([[d1, d2], [d2, d3]])
    return H
Ejemplo n.º 3
0
def logLikelihood(x, y, t_1, t_2):
    psigmoid = [sigmoid(i, t_1, t_2) for i in x]
    u = [
        q * gmpy2.log(p) + (1 - q) * gmpy2.log(1 - p)
        for (p, q) in zip(psigmoid, y)
    ]
    return gmpy2.fsum(u)
    def optimized_normalized_sample(self, W):
        """ Optimized Normalized sampling without division.

        Args:
          W: a set of weights from which to sample.

        Returns: an integer in [0,len(W)] corresponding to the index sampled.
        WARNING: introduces a timing channel for differing weight distributions.
    """
        t = gmpy2.fsum(W)  # compute total weight
        C = [gmpy2.fsum(W[0:i + 1])
             for i in range(0, len(W))]  # compute cumulative weights
        s = 0
        log2t = 0
        while gmpy2.exp2(log2t) > t:
            log2t -= 1
        while gmpy2.exp2(log2t) <= t:
            log2t += 1
        j = log2t - 1
        remaining = [i for i in range(0, len(W))]
        if t < gmpy2.exp2(log2t):
            remaining.append(len(W))  # add a dummy value
            C.append(gmpy2.exp2(log2t))
        while len(remaining) > 1:
            r = self.rng()
            s = s + r * gmpy2.exp2(j)

            to_remove = []
            for i in remaining:  # check if each remaining index is still reachable
                if C[i] <= s:
                    to_remove.append(i)
                if i > 0:
                    if C[i - 1] >= s + gmpy2.exp2(j):
                        to_remove.append(i)
            for i in to_remove:
                remaining.remove(i)
            if len(remaining) == 1 and remaining[0] == len(W):
                s = 0
                j = log2t  # don't subtract 1, it's going to be decremented
                remaining = [i for i in range(0, len(W))]
                if t < gmpy2.exp2(log2t):
                    remaining.append(len(W))  # add a dummy value
                    C.append(gmpy2.exp2(log2t))

            j -= 1
        return remaining[0]
Ejemplo n.º 5
0
 def dot(self, other):
     """Return the dot product of this MPFRVector with another MPFRVector."""
     if not isinstance(other, MPFRVector):
         raise ValueError(
             "cannot take dot product of MPFRVector with non-MPFRVector")
     if len(self.entries) != len(other.entries):
         raise ValueError(
             "cannot take dot product MPFRVectors with different lengths")
     return gmpy2.fsum(x * y for x, y in zip(self.entries, other.entries))
Ejemplo n.º 6
0
def gradient(x, y, t_1, t_2):
    psigmoid = [sigmoid(i, t_1, t_2) for i in x]
    u = [q - p for (p, q) in zip(psigmoid, y)]
    v = [t * k for (t, k) in zip(u, x)]
    return np.array([[gmpy2.fsum(v), gmpy2.fsum(u)]])
Ejemplo n.º 7
0
def log_likelihood(x,y, t_1, t_2): 
	sigmoidP = [sigmoid(i, t_1, t_2) for i in x] 
	u = [q*gmpy2.log(p) + (1 - q)*gmpy2.log(1 - p) for p,q in zip(sigmoidP,y)]
	return gmpy2.fsum(u)
Ejemplo n.º 8
0
 def norm_squared(self):
     """Return the squared Euclidean norm of this MPFRVector."""
     return gmpy2.fsum(map(gmpy2.square, self.entries))