Ejemplo n.º 1
0
 def random(cls, allow_inf=True) -> 'FPVector':
     bias = (1 << (cls.exponent_size - 1)) - 1
     if allow_inf:
         sign = random.choice([-1, 1])
         mantissa = gmpy2.mpfr_random(gmpy2.random_state()) + 1
         exp = random.randint(1 - bias, bias + 1)
         return cls(mantissa * sign * (gmpy2.mpfr(2)**gmpy2.mpfr(exp)))
     else:
         sign = random.choice([-1, 1])
         mantissa = gmpy2.mpfr_random(gmpy2.random_state()) + 1
         exp = random.randint(1 - bias, bias)
         return cls(mantissa * sign * (gmpy2.mpfr(2)**gmpy2.mpfr(exp)))
Ejemplo n.º 2
0
def process_f_with_multiplicative_group(N):
    while True:
        j = gmpy2.mpz_random(random_state, int(lg(N))) + 1
        r = gmpy2.mpz_random(random_state, 2**j)
        if j < threshold_bits:
            # For small numbers, run the old process_f
            # Multiplicative group hint can be computed later
            r = gmpy2.mpz_random(random_state, 2**j)
            q = 2**j + r
            if q > N:
                continue
            p, alpha = prime_power(q)
            if not p:
                continue
            l = gmpy2.mpfr_random(random_state)
            if l < delta_n(N, p, alpha) * 2**int(lg(q)):
                return p, alpha, {}
        else:
            # Generate a random factored number between (2 ** j - 1) and (2 ** (j + 1) - 2)
            # This is so that we get the multiplicative group of q
            x, xf = process_r(2**(j + 1) - 2)
            q = x + 1
            if q > N:
                continue
            p, alpha = prime_power(q)
            if not p:
                continue
            l = gmpy2.mpfr_random(random_state)
            if l < delta_n(N, p, alpha) * 2**int(lg(q)):
                if alpha == 1:
                    phi_hint = xf
                else:
                    # This is a special case: in this case xf isn't the multiplicative group
                    # But luckily since p^alpha - 1 = (p - 1) * (1 + p + ... + p^(alpha - 1))
                    # we will still have all the factors to get the factorisation of p - 1
                    phi_hint = []
                    remaining_x = x
                    for f in xf:
                        if remaining_x % f == 0:
                            phi_hint.append(f)
                            remaining_x /= f
                            if remaining_x == 1:
                                break
                return p, alpha, {p: phi_hint}
Ejemplo n.º 3
0
def process_r(N):
    if N < 2**threshold_bits:
        x = gmpy2.mpz_random(random_state, (N + 1) // 2) + N // 2 + 1
        return x, factor_N(x)
    while True:
        p, alpha = process_f(N)
        q = p**alpha
        Nprime = int(N // q)
        y, yf = process_r(Nprime)
        x = y * q
        l = gmpy2.mpfr_random(random_state)
        if l < gmpy2.log(N // 2) / gmpy2.log(x):
            return x, [p] * alpha + yf
Ejemplo n.º 4
0
def process_f(N):
    while True:
        j = gmpy2.mpz_random(random_state, int(lg(N))) + 1
        r = gmpy2.mpz_random(random_state, 2**j)
        q = 2**j + r
        if q > N:
            continue
        p, alpha = prime_power(q)
        if not p:
            continue
        l = gmpy2.mpfr_random(random_state)
        if l < delta_n(N, p, alpha) * 2**int(lg(q)):
            return p, alpha
Ejemplo n.º 5
0
def process_r_with_multiplicative_group(N):
    if N < 2**threshold_bits:
        x = gmpy2.mpz_random(random_state, (N + 1) // 2) + N // 2 + 1
        xf = factor_N(x)
        # No factorisation hints for small factors, we can easily generate them later
        return x, xf, {}
    while True:
        p, alpha, phi_hint = process_f_with_multiplicative_group(N)
        q = p**alpha
        Nprime = int(N // q)
        y, yf, phi_hint2 = process_r_with_multiplicative_group(Nprime)
        x = y * q
        l = gmpy2.mpfr_random(random_state)
        if l < gmpy2.log(N // 2) / gmpy2.log(x):
            phi_hint.update(phi_hint2)
            return x, [p] * alpha + yf, phi_hint
Ejemplo n.º 6
0
def random():
    seed = int(os.urandom(BYTES).encode('hex'), 16)
    return gmpy2.mpfr_random(gmpy2.random_state(seed))
Ejemplo n.º 7
0
def random():
    seed = int(os.urandom(BYTES).encode('hex'), 16)
    return gmpy2.mpfr_random(gmpy2.random_state(seed))