Ejemplo n.º 1
0
 def test_gradient(self):
     gnn = GraphNeuralNetwork(vector_size=2)
     gnn2 = copy.deepcopy(gnn)
     gnn.params["W"] = -np.arange(1, 5).reshape(2, 2)
     gnn.params["b"] = np.array([-100])
     graph = [[0, 0, 1, 0, 0],
              [0, 0, 1, 1, 1],
              [1, 1, 0, 1, 0],
              [0, 1, 1, 0, 1],
              [0, 1, 0, 1, 0]]
     vertex_size = 5
     label = 1
     step_size = 3
     epsilon1 = -100
     expected1 = repr(np.array([-1.]))
     actual1 = repr(gnn.gradient("b", graph, vertex_size, label,
                                 step_size, epsilon=epsilon1))
     self.assertEqual(expected1, actual1)
     epsilon2 = 1.0e-4
     for key in gnn.params.keys():
         expected2 = gnn2.params
         _ = gnn2.gradient(key, graph, vertex_size, label,
                           step_size, epsilon=epsilon2)
         actual2 = gnn2.params
         self.assertEqual(expected2, actual2)
Ejemplo n.º 2
0
 def test_aggregate(self):
     gnn = GraphNeuralNetwork()
     gnn.params["W"] = IDENTITY_WEIGHT
     H = np.zeros((4, 8))
     H[:, 0] = 1
     for t in range(4):
         self.assertTrue(np.array_equal(H, SAMPLE_OUT[t]))
         H = gnn._aggregate(SAMPLE_GRAPH, H)
Ejemplo n.º 3
0
    def test_call(self):
        gnn1 = GraphNeuralNetwork(vector_size=2)
        gnn1.params["W"] = np.arange(1, 5).reshape(2, 2)
        vertex_size1 = 4
        graph1 = [[0, 0, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1], [0, 1, 1, 0]]
        expected1 = [
            [8., 16.],  # 集約1~3回
            [126., 180.],
            [1406., 2052.]
        ]

        gnn1_2 = GraphNeuralNetwork(vector_size=2)  # ReLU確認
        gnn1_2.params["W"] = -np.arange(1, 5).reshape(2, 2)
        expected1_2 = [[0., 0.], [0., 0.], [0., 0.]]

        gnn2 = GraphNeuralNetwork(vector_size=3)
        gnn2.params["W"] = np.arange(1, 10).reshape(3, 3)
        vertex_size2 = 5
        graph2 = np.array([[0, 0, 1, 0, 0], [0, 0, 1, 1, 1], [1, 1, 0, 1, 0],
                           [0, 1, 1, 0, 1], [0, 1, 0, 1, 0]])
        expected2 = [[12., 24., 36.], [960., 1152., 1344.],
                     [39312., 48384., 57456.]]

        for i in range(0, 3):
            actual1 = gnn1(graph1, vertex_size1, i + 1).tolist()
            self.assertEqual(expected1[i], actual1)
            actual1_2 = gnn1_2(graph1, vertex_size1, i + 1).tolist()
            self.assertEqual(expected1_2[i], actual1_2)
            actual2 = gnn2(graph2, vertex_size2, i + 1).tolist()
            self.assertEqual(expected2[i], actual2)
Ejemplo n.º 4
0
    def test_predict(self):
        gnn1 = GraphNeuralNetwork(2)
        gnn1.params["W"] = np.arange(1, 5).reshape(2, 2)
        gnn1.params["A"] = np.arange(1, 3)
        gnn1.params["b"] = np.array([1])
        sgd = SGD()
        trainer1 = Trainer(gnn1, sgd)

        graphs = [[[0, 0, 1, 0],
                   [0, 0, 1, 1],
                   [1, 1, 0, 1],
                   [0, 1, 1, 0]]] * 10
        vertex_sizes = [4] * 10

        expected1 = [1] * 10
        actual1 = trainer1.predict(graphs, vertex_sizes)
        self.assertEqual(expected1, actual1)

        gnn2 = GraphNeuralNetwork(3)
        gnn2.params["W"] = -np.arange(1, 10).reshape(3, 3)
        gnn2.params["b"] = -np.array([1])
        trainer2 = Trainer(gnn2, sgd)

        expected2 = [0] * 10
        actual2 = trainer2.predict(graphs, vertex_sizes)
        self.assertEqual(expected2, actual2)
Ejemplo n.º 5
0
 def test_loss(self):
     gnn = GraphNeuralNetwork(vector_size=3)
     gnn.params["W"] = -np.arange(1, 10).reshape(3, 3)
     gnn.params["b"] = np.array([-100])
     graphs = [[[0, 0, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1], [0, 1, 1, 0]]
               ] * 10
     vertex_sizes = [4] * 10
     labels = [1] * 10
     expected = "array([100.])"
     actual = repr(gnn.loss(graphs, vertex_sizes, labels))
     self.assertEqual(expected, actual)
Ejemplo n.º 6
0
    def test_update(self):
        for vector_size in range(1, 10):
            sgd = MomentumSGD()
            gnn = GraphNeuralNetwork(vector_size)
            expected = gnn.params
            sgd.update(gnn)
            actual = gnn.params
            self.assertEqual(expected, actual)

            gnn.grads["W"] = np.random.rand(vector_size, vector_size)
            gnn.grads["A"] = np.random.rand(vector_size)
            gnn.grads["b"] = np.random.rand(1)
            v = {}
            for key, grad in gnn.grads.items():
                v[key] = np.zeros_like(grad)
            params = copy.deepcopy(gnn.params)

            for _ in range(0, 100):
                gnn.grads["W"] = np.random.rand(vector_size, vector_size)
                gnn.grads["A"] = np.random.rand(vector_size)
                gnn.grads["b"] = np.random.rand(1)
                sgd.update(gnn)
                for key, param in params.items():
                    params[key] = param - sgd.lr * gnn.grads[key]\
                                 + sgd.momentum * v[key]
                    expected1 = repr(params[key])
                    actual1 = repr(gnn.params[key])
                    self.assertEqual(expected1, actual1)
                    v[key] = np.array(-sgd.lr * gnn.grads[key] +
                                      sgd.momentum * v[key])
                    expected2 = (repr(v[key]))
                    actual2 = repr(sgd.w[key])
                    self.assertEqual(expected2, actual2)
Ejemplo n.º 7
0
 def test_backward(self):
     gnn = GraphNeuralNetwork(vector_size=2)
     gnn2 = copy.deepcopy(gnn)
     graphs = [[[0, 0, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1], [0, 1, 1, 0]]
               ] * 10
     vertex_sizes = [4] * 10
     labels = [1] * 10
     step_size = 4
     epsilon = 1.0e-4
     params = gnn.params
     gnn.backward(graphs, vertex_sizes, labels, step_size, epsilon)
     for key, param in params.items():
         expected = repr(
             gnn2.gradient(key, graphs, vertex_sizes, labels, step_size,
                           epsilon))
         actual = repr(gnn.grads[key])
         self.assertEqual(expected, actual)
Ejemplo n.º 8
0
 def test_update(self):
     sgd = SGD()
     gnn = GraphNeuralNetwork(vector_size=2)
     expected = gnn.params
     sgd.update(gnn)
     actual = gnn.params
     self.assertEqual(expected, actual)
     params = copy.deepcopy(gnn.params)
     for _ in range(100):
         gnn.grads["W"] = np.random.rand()
         gnn.grads["A"] = np.random.rand()
         gnn.grads["b"] = np.random.rand()
         sgd.update(gnn)
         for key, param in params.items():
             params[key] = param - gnn.grads[key] * sgd.lr
             expected = repr(params[key])
             actual = repr(gnn.params[key])
             self.assertEqual(expected, actual)
Ejemplo n.º 9
0
    def test_fit(self):
        gnn1 = GraphNeuralNetwork(2)
        gnn2 = GraphNeuralNetwork(2)
        sgd = MomentumSGD()
        trainer1 = Trainer(gnn1, sgd)
        trainer2 = Trainer(gnn2, sgd)
        graphs = [np.random.randint(0, 2, (10, 10))] * 10
        vertex_sizes = [10] * 10

        labels1 = [0] * 10
        expected1 = [0] * 10
        trainer1.fit(graphs, vertex_sizes, labels1)
        actual1 = trainer1.predict(graphs, vertex_sizes)
        self.assertEqual(expected1, actual1)

        labels2 = [1] * 10
        expected2 = [1] * 10
        trainer2.fit(graphs, vertex_sizes, labels2)
        actual2 = trainer2.predict(graphs, vertex_sizes)
        self.assertEqual(expected2, actual2)
Ejemplo n.º 10
0
 def test_get_embedding(self):
     gnn = GraphNeuralNetwork()
     gnn.params["W"] = IDENTITY_WEIGHT
     for t in range(4):
         gnn.T = t
         out = gnn._get_embedding(SAMPLE_GRAPH)
         self.assertTrue(np.array_equal(out, gnn._readout(SAMPLE_OUT[t])))
Ejemplo n.º 11
0
    def test_forward(self):
        gnn = GraphNeuralNetwork(vertex_size=4, vector_size=2)
        gnn.W = np.arange(1, 5).reshape(2, 2)
        graph = np.array([[0, 0, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1],
                          [0, 1, 1, 0]])

        # 集約1回目
        actual_output1 = gnn.forward(graph, 1).tolist()
        expected_output1 = [8., 16.]
        self.assertEqual(expected_output1, actual_output1)
        actual_x1 = gnn.x.tolist()
        expected_x1 = [[1., 2.], [2., 4.], [3., 6.], [2., 4.]]
        self.assertEqual(expected_x1, actual_x1)

        # 集約2回目
        expected_output2 = [126., 180.]
        actual_output2 = gnn.forward(graph, 1).tolist()
        self.assertEqual(expected_output2, actual_output2)
        actual_x2 = gnn.x.tolist()
        expected_x2 = [[21., 30.], [35., 50.], [35., 50.], [35., 50.]]
        self.assertEqual(expected_x2, actual_x2)

        # 集約3回目
        expected_output3 = [1406., 2052.]
        actual_output3 = gnn.forward(graph, 1).tolist()
        self.assertEqual(expected_output3, actual_output3)
        actual_x3 = gnn.x.tolist()
        expected_x3 = [[185., 270.], [370., 540.], [481., 702.], [370., 540.]]
        self.assertEqual(expected_x3, actual_x3)
Ejemplo n.º 12
0
    def test_accuracy(self):
        gnn = GraphNeuralNetwork(2)
        gnn.params["W"] = np.arange(1, 5).reshape(2, 2)
        gnn.params["A"] = np.arange(1, 3)
        gnn.params["b"] = np.array([1])
        sgd = SGD()
        trainer = Trainer(gnn, sgd)
        graphs = [[[0, 0, 1, 0],
                   [0, 0, 1, 1],
                   [1, 1, 0, 1],
                   [0, 1, 1, 0]]] * 10
        vertex_sizes = [4] * 10

        labels1 = [1] * 10
        expected1 = 1.
        actual1 = trainer.accuracy(graphs, vertex_sizes, labels1)
        self.assertEqual(expected1, actual1)

        labels2 = [1] * 7 + [0] * 3
        expected2 = 0.7
        actual2 = trainer.accuracy(graphs, vertex_sizes, labels2)
        self.assertEqual(expected2, actual2)
Ejemplo n.º 13
0
 def test__loss(self):
     gnn = GraphNeuralNetwork(vector_size=2)
     gnn.params["W"] = -np.arange(1, 5).reshape(2, 2)
     gnn.params["b"] = np.array([0])
     vertex_size = 4
     graph = [[0, 0, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1], [0, 1, 1, 0]]
     label = [0, 1]
     params = [[0], [-100], [100]]
     expecteds = [[0.6931471805599453] * 2, [0., 100.], [100., 0.]]
     for param, expected in zip(params, expecteds):
         gnn.params["b"] = np.array(param)
         actual1 = gnn._loss(graph, vertex_size, label[0])
         self.assertEqual(expected[0], actual1)
         actual2 = gnn._loss(graph, vertex_size, label[1])
         self.assertEqual(expected[1], actual2)
Ejemplo n.º 14
0
    def test_forward(self):
        gnn = GraphNeuralNetwork(vector_size=2)
        gnn.params["W"] = np.arange(1, 5).reshape(2, 2)
        gnn.params["A"] = np.arange(1, 3)
        gnn.params["b"] = np.array([1])
        vertex_size = 4
        graph = [[0, 0, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1], [0, 1, 1, 0]]
        expected = [[41.], [487.], [5511.]]  # 集約1~3回

        for i in range(0, 3):
            actual = gnn.forward(graph, vertex_size, i + 1).tolist()
            self.assertEqual(expected[i], actual)
Ejemplo n.º 15
0
 def test_kfold_cross_val(self):
     gnn = GraphNeuralNetwork(2)
     sgd = SGD()
     trainer = Trainer(gnn, sgd)
     graphs = [[[0, 0, 1, 0],
                [0, 0, 1, 1],
                [1, 1, 0, 1],
                [0, 1, 1, 0]]] * 100
     vertex_sizes = [4] * 100
     labels = [0] * 100
     expected = gnn.params
     _ = trainer.kfold_cross_validation(graphs, vertex_sizes, labels)
     actual = gnn.params
     self.assertEqual(expected, actual)
     with self.assertRaises(SplitError):
         trainer.kfold_cross_validation(graphs, vertex_sizes, labels,
                                        minibatch_size=20)
         trainer.kfold_cross_validation(graphs, vertex_sizes, labels,
                                        k=20)
Ejemplo n.º 16
0
    def test_update(self):
        for vector_size in range(1, 10):
            adam = Adam()
            gnn = GraphNeuralNetwork(vector_size)
            expected = gnn.params
            adam.update(gnn)
            actual = gnn.params
            self.assertEqual(expected, actual)

            gnn.grads["W"] = np.random.rand(vector_size, vector_size)
            gnn.grads["A"] = np.random.rand(vector_size)
            gnn.grads["b"] = np.random.rand(1)

            v = {}
            m = {}
            for key, grad in gnn.grads.items():
                v[key] = np.zeros_like(grad)
                m[key] = np.zeros_like(grad)
            params = copy.deepcopy(gnn.params)

            for i in range(1, 100):
                gnn.grads["W"] = np.random.rand(vector_size, vector_size)
                gnn.grads["A"] = np.random.rand(vector_size)
                gnn.grads["b"] = np.random.rand(1)
                adam.update(gnn)
                for key, param in params.items():
                    m[key] = adam.beta1 * m[key] + (
                        (1 - adam.beta1) * gnn.grads[key])
                    v[key] = adam.beta2 * v[key] + (
                        (1 - adam.beta2) * gnn.grads[key]**2)
                    m_hat = m[key] / (1 - adam.beta1**i)
                    v_hat = v[key] / (1 - adam.beta2**i)
                    params[key] = param - adam.lr * m_hat / (np.sqrt(v_hat) +
                                                             1.0e-8)
                    expected1 = repr(
                        np.round(np.abs(params[key] - gnn.params[key]), 6))
                    actual1 = repr(np.zeros_like(params[key]))
                    self.assertEqual(expected1, actual1)
Ejemplo n.º 17
0
    for epoch in range(epoch_num):
        np.random.shuffle(train_data)
        iter_num = TRAIN_NUM // MINIBATCH_SIZE
        for mb_idx in range(iter_num):
            minibatch = train_data[mb_idx * MINIBATCH_SIZE:(mb_idx + 1) *
                                   MINIBATCH_SIZE]
            gnn.gradient_descent(minibatch)
            # 1 epoch中に2回testを計算
            if mb_idx in [0, iter_num // 2]:
                loss, accuracy = test(gnn, test_data)
                if loss < loss_uppper_bound and accuracy > accuracy_lower_bound:
                    print("epoch: {}, loss: {}, accuracy: {}".format(
                        epoch, loss, accuracy))
                    return True
    return False


if __name__ == "__main__":
    train_data = read_train_data()
    test_data = read_test_data()

    for i in range(100):
        print("{}th model".format(i))
        gnn = GraphNeuralNetwork(Adam())
        if train_best(gnn, train_data, test_data, epoch_num=100):
            path_name = "model/best_model.pickle"
            os.makedirs(os.path.dirname(path_name), exist_ok=True)
            with open(path_name, mode="wb") as f:
                pickle.dump(gnn, f)
            print("{} saved!".format(path_name))
            exit(0)
Ejemplo n.º 18
0
import sys
sys.path.append("src/")

from gnn import GraphNeuralNetwork
from optimizer import SGD, Momentum
from train import read_train_data, read_test_data, train

if __name__ == "__main__":
    train_data = read_train_data()
    test_data = read_test_data()
    optimizers = {"SGD": SGD, "Momentum": Momentum}
    for i in range(5):
        for name, Optimizer in optimizers.items():
            print("{}th {} start!".format(i, name))
            gnn = GraphNeuralNetwork(Optimizer())
            train(gnn,
                  train_data,
                  test_data,
                  epoch_num=100,
                  print_train_loss=True)
Ejemplo n.º 19
0
from gnn import GraphNeuralNetwork
from optimizer import Adam
from trainer import Trainer


if __name__ == "__main__":
    train_len = 2000
    test_len = 500
    train_vertex = [np.loadtxt(f"../datasets/train/{i}_graph.txt",
                    dtype=np.int, usecols=0)[0] for i in range(train_len)]
    train_graph = [np.loadtxt(f"../datasets/train/{i}_graph.txt",
                   dtype=np.int, skiprows=1) for i in range(train_len)]
    train_label = [np.loadtxt(f"../datasets/train/{i}_label.txt",
                   dtype=np.int) for i in range(train_len)]
    test_vertex = [np.loadtxt(f"../datasets/test/{i}_graph.txt",
                   dtype=np.int, usecols=0)[0] for i in range(test_len)]
    test_graph = [np.loadtxt(f"../datasets/test/{i}_graph.txt",
                  dtype=np.int, skiprows=1) for i in range(test_len)]
    gnn = GraphNeuralNetwork(vector_size=8)
    adam = Adam()
    trainer = Trainer(gnn, adam)
    loss = trainer.fit(train_graph, train_vertex, train_label,
                       minibatch_size=140, epoch=25)
    pred = trainer.predict(test_graph, test_vertex)
    np.savetxt("../pred.txt", np.array(pred).reshape(-1, 1), fmt='%d')
    plt.xlabel("iterations")
    plt.ylabel("loss")
    plt.plot(np.arange(len(loss)), loss, label="Adam")
    plt.legend()
    plt.show()
Ejemplo n.º 20
0
import numpy as np
import matplotlib.pyplot as plt

from gnn import GraphNeuralNetwork
from sgd import SGD

if __name__ == "__main__":
    gnn = GraphNeuralNetwork(8, 0)
    sgd = SGD()
    graph = [[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
             [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
             [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
             [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1],
             [1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0]]
    vertex_size = 11
    label = 1
    loss = []
    print("A")
    for i in range(0, 50):
        loss.append(gnn.loss(graph, vertex_size, label))
        gnn.backward(graph, vertex_size, label)
        sgd.update(gnn)
    loss.append(gnn.loss(graph, vertex_size, label))

    print(f"最初の損失:{loss[0]}, 最後の損失:{loss[-1]}")
Ejemplo n.º 21
0
 def test_predict(self):
     gnn1 = GraphNeuralNetwork(vector_size=2)
     gnn1.params["W"] = np.arange(1, 5).reshape(2, 2)
     gnn1.params["A"] = np.arange(1, 3)
     gnn1.params["b"] = np.array([1])
     gnn2 = GraphNeuralNetwork(vector_size=2)
     gnn2.params["W"] = -np.arange(1, 5).reshape(2, 2)
     gnn2.params["b"] = np.array([-1])
     vertex_size = 4
     graph = [[0, 0, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1], [0, 1, 1, 0]]
     expected1 = 1
     actual1 = gnn1.predict(graph, vertex_size)
     self.assertEqual(expected1, actual1)
     expected2 = 0
     actual2 = gnn2.predict(graph, vertex_size)
     self.assertEqual(expected2, actual2)
Ejemplo n.º 22
0
import numpy as np

from gnn import GraphNeuralNetwork
from optimizer import MomentumSGD
from trainer import Trainer


if __name__ == "__main__":
    file_len = 2000
    vertex_data = [np.loadtxt(f"../train/{i}_graph.txt",
                   dtype=np.int, usecols=0)[0] for i in range(file_len)]
    graph_data = [np.loadtxt(f"../train/{i}_graph.txt",
                  dtype=np.int, skiprows=1) for i in range(file_len)]
    label_data = [np.loadtxt(f"../train/{i}_label.txt",
                  dtype=np.int) for i in range(file_len)]
    gnn = GraphNeuralNetwork(vector_size=8, seed=0)
    sgd = MomentumSGD()
    trainer = Trainer(gnn, sgd)
    print("10分割交差検証を行った時の平均損失と平均精度")
    train_loss, test_loss, train_score, test_score = trainer.kfold_cross_validation(graph_data, vertex_data, label_data,
                                                                                    minibatch_size=140, epoch=25)
    print(f"学習時の平均損失:{train_loss}, 平均:{np.mean(train_loss)}")
    print(f"検定時の平均損失:{test_loss}, 平均:{np.mean(test_loss)}")
    print(f"学習時の平均精度:{train_score}, 平均:{np.mean(train_score)}")
    print(f"検定時の平均精度:{test_score}, 平均:{np.mean(test_score)}")
Ejemplo n.º 23
0
import sys
sys.path.append("src/")
from gnn import GraphNeuralNetwork
from optimizer import SGD
from train import read_graph, read_label

if __name__ == "__main__":
    graph = read_graph(0)
    label = read_label(0)
    print("label: {}".format(label))
    gnn = GraphNeuralNetwork(optimizer=SGD())
    for i in range(1000):
        print("[{}th iteration] loss: {}, p: {}".format(
            i,
            gnn.loss(graph, label)[0],
            gnn._get_p(graph)[0],
        ))
        gnn.gradient_descent([(graph, label)])