def __init__(self, fg, audio_rate, quad_rate, tau=75e-6, max_dev=5e3):
        """
        Narrow Band FM Receiver.

        Takes a single complex baseband input stream and produces a single
        float output stream of audio sample in the range [-1, +1].

        @param fg: flow graph
        @param audio_rate: sample rate of audio stream, >= 16k
        @type audio_rate: integer
        @param quad_rate: sample rate of output stream
        @type quad_rate: integer
        @param tau: preemphasis time constant (default 75e-6)
        @type tau: float
        @param max_dev: maximum deviation in Hz (default 5e3)
        @type max_dev: float

        quad_rate must be an integer multiple of audio_rate.

        Exported sub-blocks (attributes):
          squelch
          quad_demod
          deemph
          audio_filter
        """

        # FIXME audio_rate and quad_rate ought to be exact rationals
        audio_rate = int(audio_rate)
        quad_rate = int(quad_rate)

        if quad_rate % audio_rate != 0:
            raise ValueError, "quad_rate is not an integer multiple of audio_rate"

        squelch_threshold = 20		# dB
        #self.squelch = gr.simple_squelch_cc(squelch_threshold, 0.001)

        # FM Demodulator  input: complex; output: float
        k = quad_rate/(2*math.pi*max_dev)
        self.quad_demod = gr.quadrature_demod_cf(k)

        # FM Deemphasis IIR filter
        self.deemph = fm_deemph (fg, quad_rate, tau=tau)

        # compute FIR taps for audio filter
        audio_decim = quad_rate // audio_rate
        audio_taps = gr.firdes.low_pass (1.0,            # gain
                                         quad_rate,      # sampling rate
                                         4.5e3,          # Audio LPF cutoff
                                         2.5e3,          # Transition band
                                         gr.firdes.WIN_HAMMING)  # filter type

        print "len(audio_taps) =", len(audio_taps)

        # Decimating audio filter
        # input: float; output: float; taps: float
        self.audio_filter = gr.fir_filter_fff(audio_decim, audio_taps)

        fg.connect(self.quad_demod, self.deemph, self.audio_filter)

        gr.hier_block.__init__(self, fg, self.quad_demod, self.audio_filter)
    def __init__(self, fg, channel_rate, audio_decim, deviation, audio_pass, audio_stop, gain=1.0, tau=75e-6):

        """	
	# Equalizer for ~100 us delay
	delay = 100e-6
	num_taps = int(channel_rate*delay)

	mu = 1e-4/num_taps
	print "CMA: delay =", delay, "n =", num_taps, "mu =", mu
	CMA = gr.cma_equalizer_cc(num_taps, 1.0, mu)
        """
        k = channel_rate / (2 * pi * deviation)
        QUAD = gr.quadrature_demod_cf(k)

        audio_taps = optfir.low_pass(
            gain,  # Filter gain
            channel_rate,  # Sample rate
            audio_pass,  # Audio passband
            audio_stop,  # Audio stopband
            0.1,  # Passband ripple
            60,
        )  # Stopband attenuation
        LPF = gr.fir_filter_fff(audio_decim, audio_taps)

        if tau is not None:
            DEEMPH = fm_deemph(fg, channel_rate, tau)
            fg.connect(QUAD, DEEMPH, LPF)
        else:
            fg.connect(QUAD, LPF)

        gr.hier_block.__init__(self, fg, QUAD, LPF)
    def __init__ (self, fg, quad_rate, audio_decimation):
        """
        Hierarchical block for demodulating a broadcast FM signal.
        
        The input is the downconverted complex baseband signal (gr_complex).
        The output is the demodulated audio (float).
        
        @param fg: flow graph.
        @type fg: flow graph
        @param quad_rate: input sample rate of complex baseband input.
        @type quad_rate: float
        @param audio_decimation: how much to decimate quad_rate to get to audio.
        @type audio_decimation: integer
        """
        volume = 20.

        max_dev = 75e3
        fm_demod_gain = quad_rate/(2*math.pi*max_dev)
        audio_rate = quad_rate / audio_decimation
        

        # We assign to self so that outsiders can grab the demodulator 
        # if they need to.  E.g., to plot its output.
        #
        # input: complex; output: float
        self.fm_demod = gr.quadrature_demod_cf (fm_demod_gain)

        # input: float; output: float
        self.deemph = fm_deemph (fg, audio_rate)
        
        # compute FIR filter taps for audio filter
        width_of_transition_band = audio_rate / 32
        audio_coeffs = gr.firdes.low_pass (1.0,         # gain
                                           quad_rate,      # sampling rate
                                           audio_rate/2 - width_of_transition_band,
                                           width_of_transition_band,
                                           gr.firdes.WIN_HAMMING)
        # input: float; output: float
        self.audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)

        fg.connect (self.fm_demod, self.audio_filter, self.deemph)

        gr.hier_block.__init__(self,
                               fg,
                               self.fm_demod,       # head of the pipeline
                               self.deemph)   # tail of the pipeline
    def __init__ (self, fg, demod_rate, audio_decimation):
        """
        Hierarchical block for demodulating a broadcast FM signal.
        
        The input is the downconverted complex baseband signal (gr_complex).
        The output is two streams of the demodulated audio (float) 0=Left, 1=Right.
        
        @param fg: flow graph.
        @type fg: flow graph
        @param demod_rate: input sample rate of complex baseband input.
        @type demod_rate: float
        @param audio_decimation: how much to decimate demod_rate to get to audio.
        @type audio_decimation: integer
        """

        bandwidth = 200e3
        audio_rate = demod_rate / audio_decimation


        # We assign to self so that outsiders can grab the demodulator 
        # if they need to.  E.g., to plot its output.
        #
        # input: complex; output: float
        alpha = 0.25*bandwidth * math.pi / demod_rate
        beta = alpha * alpha / 4.0
        max_freq = 2.0*math.pi*100e3/demod_rate
            
        self.fm_demod = gr.pll_freqdet_cf (alpha,beta,max_freq,-max_freq)

        # input: float; output: float
        self.deemph_Left  = fm_deemph (fg, audio_rate)
        self.deemph_Right = fm_deemph (fg, audio_rate)
        
        # compute FIR filter taps for audio filter
        width_of_transition_band = audio_rate / 32
        audio_coeffs = gr.firdes.low_pass (1.0 ,         # gain
                                           demod_rate,      # sampling rate
                                           15000 ,
                                           width_of_transition_band,
                                           gr.firdes.WIN_HAMMING)
        # input: float; output: float
        self.audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)
        if 1:
            # Pick off the stereo carrier/2 with this filter. It attenuated 10 dB so apply 10 dB gain
            # We pick off the negative frequency half because we want to base band by it!
            ##  NOTE  THIS WAS HACKED TO OFFSET INSERTION LOSS DUE TO DEEMPHASIS

            stereo_carrier_filter_coeffs = gr.firdes.complex_band_pass(10.0,
                                                                   demod_rate,
                                                                   -19020,
                                                                   -18980,
                                                                   width_of_transition_band,
                                                                   gr.firdes.WIN_HAMMING)
            
            #print "len stereo carrier filter = ",len(stereo_carrier_filter_coeffs)
            #print "stereo carrier filter ", stereo_carrier_filter_coeffs
            #print "width of transition band = ",width_of_transition_band, " audio rate = ", audio_rate

            # Pick off the double side band suppressed carrier Left-Right audio. It is attenuated 10 dB so apply 10 dB gain

            stereo_dsbsc_filter_coeffs = gr.firdes.complex_band_pass(20.0,
                                                                     demod_rate,
                                                                     38000-15000/2,
                                                                     38000+15000/2,
                                                                     width_of_transition_band,
                                                                     gr.firdes.WIN_HAMMING)
            #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs)
            #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs
            # construct overlap add filter system from coefficients for stereo carrier

            self.stereo_carrier_filter = gr.fir_filter_fcc(audio_decimation, stereo_carrier_filter_coeffs)

            # carrier is twice the picked off carrier so arrange to do a commplex multiply

            self.stereo_carrier_generator = gr.multiply_cc();

            # Pick off the rds signal

            stereo_rds_filter_coeffs = gr.firdes.complex_band_pass(30.0,
                                                                     demod_rate,
                                                                     57000 - 1500,
                                                                     57000 + 1500,
                                                                     width_of_transition_band,
                                                                     gr.firdes.WIN_HAMMING)
            #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs)
            #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs
            # construct overlap add filter system from coefficients for stereo carrier

            self.stereo_carrier_filter = gr.fir_filter_fcc(audio_decimation, stereo_carrier_filter_coeffs)
	    self.rds_signal_filter = gr.fir_filter_fcc(audio_decimation, stereo_rds_filter_coeffs)






	    self.rds_carrier_generator = gr.multiply_cc();
	    self.rds_signal_generator = gr.multiply_cc();
	    self_rds_signal_processor = gr.null_sink(gr.sizeof_gr_complex);



            alpha = 5 * 0.25 * math.pi / (audio_rate)
            beta = alpha * alpha / 4.0
            max_freq = -2.0*math.pi*18990/audio_rate;
            min_freq = -2.0*math.pi*19010/audio_rate;
            
            self.stereo_carrier_pll_recovery = gr.pll_refout_cc(alpha,beta,max_freq,min_freq);
            #self.stereo_carrier_pll_recovery.squelch_enable(False) #pll_refout does not have squelch yet, so disabled for now 
            

            # set up mixer (multiplier) to get the L-R signal at baseband

            self.stereo_basebander = gr.multiply_cc();

            # pick off the real component of the basebanded L-R signal.  The imaginary SHOULD be zero

            self.LmR_real = gr.complex_to_real();
            self.Make_Left = gr.add_ff();
            self.Make_Right = gr.sub_ff();
            
            self.stereo_dsbsc_filter = gr.fir_filter_fcc(audio_decimation, stereo_dsbsc_filter_coeffs)


        if 1:

            # send the real signal to complex filter to pick off the carrier and then to one side of a multiplier
            fg.connect (self.fm_demod,self.stereo_carrier_filter,self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,0))
            # send the already filtered carrier to the otherside of the carrier
            fg.connect (self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,1))
            # the resulting signal from this multiplier is the carrier with correct phase but at -38000 Hz.

            # send the new carrier to one side of the mixer (multiplier)
            fg.connect (self.stereo_carrier_generator, (self.stereo_basebander,0))
            # send the demphasized audio to the DSBSC pick off filter,  the complex
            # DSBSC signal at +38000 Hz is sent to the other side of the mixer/multiplier
            fg.connect (self.fm_demod,self.stereo_dsbsc_filter, (self.stereo_basebander,1))
            # the result is BASEBANDED DSBSC with phase zero!

            # Pick off the real part since the imaginary is theoretically zero and then to one side of a summer
            fg.connect (self.stereo_basebander, self.LmR_real, (self.Make_Left,0))
            #take the same real part of the DSBSC baseband signal and send it to negative side of a subtracter
            fg.connect (self.LmR_real,(self.Make_Right,1))

	    # Make rds carrier by taking the squared pilot tone and multiplying by pilot tone
	    fg.connect (self.stereo_basebander,(self.rds_carrier_generator,0))
            fg.connect (self.stereo_carrier_pll_recovery,(self.rds_carrier_generator,1)) 
	    # take signal, filter off rds,  send into mixer 0 channel
	    fg.connect (self.fm_demod,self.rds_signal_filter,(self.rds_signal_generator,0))
            # take rds_carrier_generator output and send into mixer 1 channel
	    fg.connect (self.rds_carrier_generator,(self.rds_signal_generator,1))
	    # send basebanded rds signal and send into "processor" which for now is a null sink
	    fg.connect (self.rds_signal_generator,self_rds_signal_processor)
	    

        if 1:
            # pick off the audio, L+R that is what we used to have and send it to the summer
            fg.connect(self.fm_demod, self.audio_filter, (self.Make_Left, 1))
            # take the picked off L+R audio and send it to the PLUS side of the subtractor
            fg.connect(self.audio_filter,(self.Make_Right, 0))
            # The result of  Make_Left  gets    (L+R) +  (L-R) and results in 2*L
            # The result of Make_Right gets  (L+R) - (L-R) and results in 2*R


            # kludge the signals into a stereo channel
            kludge = gr.kludge_copy(gr.sizeof_float)
            fg.connect(self.Make_Left , self.deemph_Left, (kludge, 0))
            fg.connect(self.Make_Right, self.deemph_Right, (kludge, 1))

           #send it to the audio system
            gr.hier_block.__init__(self,
                                   fg,
                                   self.fm_demod,       # head of the pipeline
                                   kludge)              # tail of the pipeline
        else:
            fg.connect (self.fm_demod, self.audio_filter)
            gr.hier_block.__init__(self,
                                   fg,
                                   self.fm_demod,       # head of the pipeline
                                   self.audio_filter)   # tail of the pipeline