Ejemplo n.º 1
0
 def __init__(self,
              data_covar_module,
              num_tasks,
              rank=1,
              task_covar_prior=None,
              bias_only=False,
              **kwargs):
     """
     """
     super(MyMultitaskKernel, self).__init__(**kwargs)
     self.task_covar_module = IndexKernel(num_tasks=num_tasks,
                                          batch_shape=self.batch_shape,
                                          rank=rank,
                                          prior=task_covar_prior)
     self.data_covar_module = data_covar_module
     self.num_tasks = num_tasks
     self.bias_only = bias_only
Ejemplo n.º 2
0
    def __init__(
        self,
        train_X: Tensor,
        train_Y: Tensor,
        task_feature: int,
        covar_module: Optional[Module] = None,
        task_covar_prior: Optional[Prior] = None,
        output_tasks: Optional[List[int]] = None,
        rank: Optional[int] = None,
        input_transform: Optional[InputTransform] = None,
        outcome_transform: Optional[OutcomeTransform] = None,
    ) -> None:
        r"""Multi-Task GP model using an ICM kernel, inferring observation noise.

        Args:
            train_X: A `n x (d + 1)` or `b x n x (d + 1)` (batch mode) tensor
                of training data. One of the columns should contain the task
                features (see `task_feature` argument).
            train_Y: A `n x 1` or `b x n x 1` (batch mode) tensor of training
                observations.
            task_feature: The index of the task feature (`-d <= task_feature <= d`).
            output_tasks: A list of task indices for which to compute model
                outputs for. If omitted, return outputs for all task indices.
            rank: The rank to be used for the index kernel. If omitted, use a
                full rank (i.e. number of tasks) kernel.
            task_covar_prior : A Prior on the task covariance matrix. Must operate
                on p.s.d. matrices. A common prior for this is the `LKJ` prior.
            input_transform: An input transform that is applied in the model's
                forward pass.

        Example:
            >>> X1, X2 = torch.rand(10, 2), torch.rand(20, 2)
            >>> i1, i2 = torch.zeros(10, 1), torch.ones(20, 1)
            >>> train_X = torch.cat([
            >>>     torch.cat([X1, i1], -1), torch.cat([X2, i2], -1),
            >>> ])
            >>> train_Y = torch.cat(f1(X1), f2(X2)).unsqueeze(-1)
            >>> model = MultiTaskGP(train_X, train_Y, task_feature=-1)
        """
        with torch.no_grad():
            transformed_X = self.transform_inputs(
                X=train_X, input_transform=input_transform)
        self._validate_tensor_args(X=transformed_X, Y=train_Y)
        all_tasks, task_feature, d = self.get_all_tasks(
            transformed_X, task_feature, output_tasks)
        if outcome_transform is not None:
            train_Y, _ = outcome_transform(train_Y)

        # squeeze output dim
        train_Y = train_Y.squeeze(-1)
        if output_tasks is None:
            output_tasks = all_tasks
        else:
            if set(output_tasks) - set(all_tasks):
                raise RuntimeError(
                    "All output tasks must be present in input data.")
        self._output_tasks = output_tasks
        self._num_outputs = len(output_tasks)

        # TODO (T41270962): Support task-specific noise levels in likelihood
        likelihood = GaussianLikelihood(noise_prior=GammaPrior(1.1, 0.05))

        # construct indexer to be used in forward
        self._task_feature = task_feature
        self._base_idxr = torch.arange(d)
        self._base_idxr[task_feature:] += 1  # exclude task feature

        super().__init__(train_inputs=train_X,
                         train_targets=train_Y,
                         likelihood=likelihood)
        self.mean_module = ConstantMean()
        if covar_module is None:
            self.covar_module = ScaleKernel(
                base_kernel=MaternKernel(nu=2.5,
                                         ard_num_dims=d,
                                         lengthscale_prior=GammaPrior(
                                             3.0, 6.0)),
                outputscale_prior=GammaPrior(2.0, 0.15),
            )
        else:
            self.covar_module = covar_module

        num_tasks = len(all_tasks)
        self._rank = rank if rank is not None else num_tasks

        self.task_covar_module = IndexKernel(num_tasks=num_tasks,
                                             rank=self._rank,
                                             prior=task_covar_prior)
        if input_transform is not None:
            self.input_transform = input_transform
        if outcome_transform is not None:
            self.outcome_transform = outcome_transform
        self.to(train_X)
Ejemplo n.º 3
0
    def __init__(
        self,
        train_X: Tensor,
        train_Y: Tensor,
        task_feature: int,
        output_tasks: Optional[List[int]] = None,
        rank: Optional[int] = None,
    ) -> None:
        r"""Multi-Task GP model using an ICM kernel, inferring observation noise.

        Args:
            train_X: A `n x (d + 1)` or `b x n x (d + 1)` (batch mode) tensor
                of training data. One of the columns should contain the task
                features (see `task_feature` argument).
            train_Y: A `n` or `b x n` (batch mode) tensor of training
                observations.
            task_feature: The index of the task feature
                (`-d <= task_feature <= d`).
            output_tasks: A list of task indices for which to compute model
                outputs for. If omitted, return outputs for all task indices.
            rank: The rank to be used for the index kernel. If omitted, use a
                full rank (i.e. number of tasks) kernel.

        Example:
            >>> X1, X2 = torch.rand(10, 2), torch.rand(20, 2)
            >>> i1, i2 = torch.zeros(10, 1), torch.ones(20, 1)
            >>> train_X = torch.stack([
            >>>     torch.cat([X1, i1], -1), torch.cat([X2, i2], -1),
            >>> ])
            >>> train_Y = torch.cat(f1(X1), f2(X2))
            >>> model = MultiTaskGP(train_X, train_Y, task_feature=-1)
        """
        if train_X.ndimension() != 2:
            # Currently, batch mode MTGPs are blocked upstream in GPyTorch
            raise ValueError(f"Unsupported shape {train_X.shape} for train_X.")
        d = train_X.shape[-1] - 1
        if not (-d <= task_feature <= d):
            raise ValueError(f"Must have that -{d} <= task_feature <= {d}")
        all_tasks = train_X[:, task_feature].unique().to(
            dtype=torch.long).tolist()
        if output_tasks is None:
            output_tasks = all_tasks
        else:
            if any(t not in all_tasks for t in output_tasks):
                raise RuntimeError(
                    "All output tasks must be present in input data.")
        self._output_tasks = output_tasks

        # TODO (T41270962): Support task-specific noise levels in likelihood
        likelihood = GaussianLikelihood(noise_prior=GammaPrior(1.1, 0.05))

        # construct indexer to be used in forward
        self._task_feature = task_feature
        self._base_idxr = torch.arange(d)
        self._base_idxr[task_feature:] += 1  # exclude task feature

        super().__init__(train_inputs=train_X,
                         train_targets=train_Y,
                         likelihood=likelihood)
        self.mean_module = ConstantMean()
        self.covar_module = ScaleKernel(
            base_kernel=MaternKernel(nu=2.5,
                                     ard_num_dims=d,
                                     lengthscale_prior=GammaPrior(3.0, 6.0)),
            outputscale_prior=GammaPrior(2.0, 0.15),
        )
        num_tasks = len(all_tasks)
        self._rank = rank if rank is not None else num_tasks
        # TODO: Add LKJ prior for the index kernel
        self.task_covar_module = IndexKernel(num_tasks=num_tasks,
                                             rank=self._rank)
        self.to(train_X)