Ejemplo n.º 1
0
    def test_inv_matmul(self):
        c_1 = Variable(torch.Tensor([4, 1, 1]), requires_grad=True)
        c_2 = Variable(torch.Tensor([4, 1, 1]), requires_grad=True)
        T_1 = Variable(torch.zeros(3, 3))
        for i in range(3):
            for j in range(3):
                T_1[i, j] = c_1[abs(i - j)]
        T_2 = gpytorch.lazy.ToeplitzLazyVariable(c_2)

        B = Variable(torch.randn(3, 4))

        res_1 = gpytorch.inv_matmul(T_1, B).sum()
        res_2 = gpytorch.inv_matmul(T_2, B).sum()

        res_1.backward()
        res_2.backward()

        self.assertLess(
            torch.norm(res_1.data - res_2.data),
            1e-4,
        )
        self.assertLess(
            torch.norm(c_1.grad.data - c_2.grad.data),
            1e-4,
        )
 def variational_posterior_covar(self, induc_test_covar,
                                 chol_variational_covar, test_test_covar,
                                 induc_induc_covar):
     # left_factor = K_{mn}K_{nn}^{-1}(S - K_{nn})
     variational_covar = chol_variational_covar.t().matmul(
         chol_variational_covar)
     left_factor = torch.mm(
         self.var,
         gpytorch.inv_matmul(induc_induc_covar,
                             variational_covar - induc_induc_covar))
     # right_factor = K_{nn}^{-1}K_{nm}
     right_factor = gpytorch.inv_matmul(induc_induc_covar, induc_test_covar)
     # test_test_covar = K_{mm} + K_{mn}K_{nn}^{-1}(S - K_{nn})K_{nn}^{-1}K_{nm}
     return test_test_covar + left_factor.mm(right_factor)
Ejemplo n.º 3
0
    def test_backward_inv_mm(self):
        for n_cols in [2, 3, 4]:
            a = torch.Tensor([
                [5, -3, 0],
                [-3, 5, 0],
                [0, 0, 2],
            ])
            b = torch.ones(3, 3).fill_(2)
            c = torch.randn(3, n_cols)
            actual_a_grad = -torch.mm(
                a.inverse().mul_(0.5).mm(torch.eye(3, n_cols)),
                a.inverse().mul_(0.5).mm(c).t()) * 2 * 2
            actual_c_grad = (a.inverse() / 2).t().mm(torch.eye(3, n_cols)) * 2

            a_var = Variable(a, requires_grad=True)
            c_var = Variable(c, requires_grad=True)
            out_var = a_var.mul(Variable(b))
            out_var = gpytorch.inv_matmul(out_var, c_var)
            out_var = out_var.mul(Variable(torch.eye(3, n_cols))).sum() * 2
            out_var.backward()
            a_res = a_var.grad.data
            c_res = c_var.grad.data

            self.assertLess(torch.norm(actual_a_grad - a_res), 1e-4)
            self.assertLess(torch.norm(actual_c_grad - c_res), 1e-4)
    def test_inv_matmul(self):
        labels_var = Variable(torch.randn(4))
        grad_output = torch.randn(4)

        # Test case
        c1_var = Variable(torch.Tensor([5, 1, 2, 0]), requires_grad=True)
        c2_var = Variable(torch.Tensor([12.5, 2.5, 5, 0]), requires_grad=True)
        toeplitz_lazy_var = ToeplitzLazyVariable(c1_var) * 2.5
        actual = ToeplitzLazyVariable(c2_var)

        # Test forward
        with gpytorch.settings.max_cg_iterations(1000):
            res = toeplitz_lazy_var.inv_matmul(labels_var)
            actual = gpytorch.inv_matmul(actual, labels_var)

        # Test backwards
        res.backward(grad_output)
        actual.backward(grad_output)

        self.assertLess(
            math.fabs(res.data.squeeze()[0] - actual.data.squeeze()[0]),
            6e-1,
        )
        self.assertLess(math.fabs(c1_var.grad.data[0] - c2_var.grad.data[0]),
                        1)
Ejemplo n.º 5
0
    def test_batch_inv_matmul(self):
        labels_var = torch.randn(2, 4, 1, requires_grad=True)
        labels_var_copy = labels_var.clone().detach().requires_grad_(True)
        grad_output = torch.randn(2, 4, 1)

        # Test case
        c1_var = torch.tensor([[5, 1, 2, 0]], dtype=torch.float).repeat(2, 1)
        c2_var = torch.tensor([[5, 1, 2, 0]], dtype=torch.float).repeat(2, 1)
        c1_var.requires_grad = True
        c2_var.requires_grad = True
        toeplitz_lazy_var = ToeplitzLazyTensor(c1_var) * torch.tensor(
            [2.5, 1.])
        actual = ToeplitzLazyTensor(c2_var).evaluate() * torch.tensor(
            [2.5, 1.]).view(2, 1, 1)

        # Test forward
        with gpytorch.settings.max_cg_iterations(1000):
            res = toeplitz_lazy_var.inv_matmul(labels_var)
            actual = gpytorch.inv_matmul(actual, labels_var_copy)

        # Test backwards
        res.backward(grad_output)
        actual.backward(grad_output)

        for i in range(c1_var.size(0)):
            for j in range(c1_var.size(1)):
                self.assertLess(
                    math.fabs(res[i, j].item() - actual[i, j].item()), 1e-2)
                self.assertLess(
                    math.fabs(c1_var.grad[i, j].item() -
                              c2_var.grad[i, j].item()), 1e-2)
def pending_test_inv_matmul():
    left_interp_indices = Variable(torch.LongTensor([[2, 3], [3, 4], [4, 5]]))
    left_interp_values = Variable(torch.Tensor([[1, 2], [0.5, 1], [1, 3]]))
    right_interp_indices = Variable(torch.LongTensor([[2, 3], [3, 4], [4, 5]]))
    right_interp_values = Variable(torch.Tensor([[1, 2], [0.5, 1], [1, 3]]))

    base_lazy_variable_mat = torch.randn(6, 6)
    base_lazy_variable_mat = base_lazy_variable_mat.t().matmul(base_lazy_variable_mat)
    base_lazy_variable = NonLazyVariable(Variable(base_lazy_variable_mat))
    test_matrix = torch.randn(3, 4)

    interp_lazy_var = InterpolatedLazyVariable(base_lazy_variable, left_interp_indices, left_interp_values,
                                               right_interp_indices, right_interp_values)
    res = interp_lazy_var.inv_matmul(Variable(test_matrix)).data

    left_matrix = torch.Tensor([
        [0, 0, 1, 2, 0, 0],
        [0, 0, 0, 0.5, 1, 0],
        [0, 0, 0, 0, 1, 3],
    ])
    right_matrix = torch.Tensor([
        [0, 0, 1, 2, 0, 0],
        [0, 0, 0, 0.5, 1, 0],
        [0, 0, 0, 0, 1, 3],
    ])
    actual_mat = Variable(left_matrix.matmul(base_lazy_variable_mat).matmul(right_matrix.t()))
    actual = gpytorch.inv_matmul(actual_mat, Variable(test_matrix)).data
    assert approx_equal(res, actual)
Ejemplo n.º 7
0
    def exact_posterior_covar(self, test_train_covar, train_test_covar,
                              test_test_covar):
        """
        Returns the covar of the posterior GP on test points, given
        prior means/covars

        Assumes self.var is train_train_covar (prior covariance matrix between train points)
        ((Lazy)Variable nxn)

        Args:
            - test_train_covar ((Lazy)Variable nxm) - prior covariance matrix between test and training points.
                                                      Usually, this is simply the transpose of train_test_covar.
            - train_test_covar ((Lazy)Variable nxm) - prior covariance matrix between training and test points.
            - test_test_covar ((Lazy)Variable mxm) - prior covariance matrix between test points
        """
        from ..lazy import NonLazyVariable, MatmulLazyVariable
        if isinstance(train_test_covar, LazyVariable):
            train_test_covar = train_test_covar.evaluate()
        if isinstance(test_train_covar, LazyVariable):
            test_train_covar = train_test_covar.t()
        if not isinstance(test_test_covar, LazyVariable):
            test_test_covar = NonLazyVariable(test_test_covar)

        covar_correction_rhs = gpytorch.inv_matmul(self.var,
                                                   train_test_covar).mul_(-1)
        return test_test_covar + MatmulLazyVariable(test_train_covar,
                                                    covar_correction_rhs)
    def test_inv_matmul(self):
        base_lazy_variable_mat = torch.randn(6, 6)
        base_lazy_variable_mat = base_lazy_variable_mat.t().matmul(
            base_lazy_variable_mat)
        test_matrix = torch.randn(3, 4)

        left_interp_indices = Variable(torch.LongTensor([[2, 3], [3, 4],
                                                         [4, 5]]),
                                       requires_grad=True)
        left_interp_values = Variable(torch.Tensor([[1, 2], [0.5, 1], [1, 3]]),
                                      requires_grad=True)
        right_interp_indices = Variable(torch.LongTensor([[2, 3], [3, 4],
                                                          [4, 5]]),
                                        requires_grad=True)
        right_interp_values = Variable(torch.Tensor([[1, 2], [0.5, 1], [1,
                                                                        3]]),
                                       requires_grad=True)
        left_interp_values_copy = Variable(left_interp_values.data,
                                           requires_grad=True)
        right_interp_values_copy = Variable(right_interp_values.data,
                                            requires_grad=True)

        base_lazy_variable = Variable(base_lazy_variable_mat,
                                      requires_grad=True)
        base_lazy_variable_copy = Variable(base_lazy_variable_mat,
                                           requires_grad=True)
        test_matrix_var = Variable(test_matrix, requires_grad=True)
        test_matrix_var_copy = Variable(test_matrix, requires_grad=True)

        interp_lazy_var = InterpolatedLazyVariable(
            NonLazyVariable(base_lazy_variable),
            left_interp_indices,
            left_interp_values,
            right_interp_indices,
            right_interp_values,
        )
        res = interp_lazy_var.inv_matmul(test_matrix_var)

        left_matrix = Variable(torch.zeros(3, 6))
        right_matrix = Variable(torch.zeros(3, 6))
        left_matrix.scatter_(1, left_interp_indices, left_interp_values_copy)
        right_matrix.scatter_(1, right_interp_indices,
                              right_interp_values_copy)
        actual_mat = left_matrix.matmul(base_lazy_variable_copy).matmul(
            right_matrix.transpose(-1, -2))
        actual = gpytorch.inv_matmul(actual_mat, test_matrix_var_copy)

        self.assertTrue(approx_equal(res.data, actual.data))

        # Backward pass
        res.sum().backward()
        actual.sum().backward()

        self.assertTrue(
            approx_equal(base_lazy_variable.grad.data,
                         base_lazy_variable_copy.grad.data))
        self.assertTrue(
            approx_equal(left_interp_values.grad.data,
                         left_interp_values_copy.grad.data))
Ejemplo n.º 9
0
    def test_inv_matmul(self):
        base_lazy_tensor_mat = torch.randn(6, 6)
        base_lazy_tensor_mat = base_lazy_tensor_mat.t().matmul(
            base_lazy_tensor_mat)
        test_matrix = torch.randn(3, 4)

        left_interp_indices = torch.LongTensor([[2, 3], [3, 4], [4, 5]])
        left_interp_values = torch.tensor([[1, 2], [0.5, 1], [1, 3]],
                                          dtype=torch.float)
        left_interp_values_copy = left_interp_values.clone()
        left_interp_values.requires_grad = True
        left_interp_values_copy.requires_grad = True

        right_interp_indices = torch.LongTensor([[2, 3], [3, 4], [4, 5]])
        right_interp_values = torch.tensor([[1, 2], [0.5, 1], [1, 3]],
                                           dtype=torch.float)
        right_interp_values_copy = right_interp_values.clone()
        right_interp_values.requires_grad = True
        right_interp_values_copy.requires_grad = True

        base_lazy_tensor = base_lazy_tensor_mat
        base_lazy_tensor.requires_grad = True
        base_lazy_tensor_copy = base_lazy_tensor_mat
        test_matrix_tensor = test_matrix
        test_matrix_tensor.requires_grad = True
        test_matrix_tensor_copy = test_matrix

        interp_lazy_tensor = InterpolatedLazyTensor(
            NonLazyTensor(base_lazy_tensor),
            left_interp_indices,
            left_interp_values,
            right_interp_indices,
            right_interp_values,
        )
        res = interp_lazy_tensor.inv_matmul(test_matrix_tensor)

        left_matrix = torch.zeros(3, 6)
        right_matrix = torch.zeros(3, 6)
        left_matrix.scatter_(1, left_interp_indices, left_interp_values_copy)
        right_matrix.scatter_(1, right_interp_indices,
                              right_interp_values_copy)
        actual_mat = left_matrix.matmul(base_lazy_tensor_copy).matmul(
            right_matrix.transpose(-1, -2))
        actual = gpytorch.inv_matmul(actual_mat, test_matrix_tensor_copy)

        self.assertTrue(approx_equal(res, actual))

        # Backward pass
        res.sum().backward()
        actual.sum().backward()

        self.assertTrue(
            approx_equal(base_lazy_tensor.grad, base_lazy_tensor_copy.grad))
        self.assertTrue(
            approx_equal(left_interp_values.grad,
                         left_interp_values_copy.grad))
Ejemplo n.º 10
0
    def test_inv_matmul(self):
        c_1 = torch.tensor([4, 1, 1], dtype=torch.float, requires_grad=True)
        c_2 = torch.tensor([4, 1, 1], dtype=torch.float, requires_grad=True)
        T_1 = torch.zeros(3, 3)
        for i in range(3):
            for j in range(3):
                T_1[i, j] = c_1[abs(i - j)]
        T_2 = gpytorch.lazy.ToeplitzLazyTensor(c_2)

        B = torch.randn(3, 4)

        res_1 = gpytorch.inv_matmul(T_1, B).sum()
        res_2 = gpytorch.inv_matmul(T_2, B).sum()

        res_1.backward()
        res_2.backward()

        self.assertLess(torch.norm(res_1 - res_2), 1e-4)
        self.assertLess(torch.norm(c_1.grad - c_2.grad), 1e-4)
Ejemplo n.º 11
0
def interpolate(idx_train, idx_test, res_pred_train, Gamma):
    idx_train = idx_train.cpu().detach().numpy()
    idx_test = idx_test.cpu().detach().numpy()
    idx = np.arange(Gamma.shape[0])
    idx_val = np.setdiff1d(idx, np.concatenate((idx_train, idx_test)))
    idx_test_val = np.concatenate((idx_test, idx_val))
    test_val_Gamma = Gamma[idx_test_val, :][:, idx_test_val]
    
    res_pred_test = inv_matmul(test_val_Gamma, -matmul(Gamma[idx_test_val, :][:, idx_train], res_pred_train))
    return res_pred_test[:len(idx_test)]
Ejemplo n.º 12
0
    def test_function_factory(self):
        # 1d
        diag_var1 = Variable(diag, requires_grad=True)
        diag_var2 = Variable(diag, requires_grad=True)
        test_mat = torch.Tensor([3, 4, 5])

        diag_lv = DiagLazyVariable(diag_var1)
        diag_ev = DiagLazyVariable(diag_var2).evaluate()

        # Forward
        res = diag_lv.inv_matmul(Variable(test_mat))
        actual = gpytorch.inv_matmul(diag_ev, Variable(test_mat))
        self.assertLess(torch.norm(res.data - actual.data), 1e-4)

        # Backward
        res.sum().backward()
        actual.sum().backward()
        self.assertLess(
            torch.norm(diag_var1.grad.data - diag_var2.grad.data),
            1e-3,
        )

        # 2d
        diag_var1 = Variable(diag, requires_grad=True)
        diag_var2 = Variable(diag, requires_grad=True)
        test_mat = torch.eye(3)

        diag_lv = DiagLazyVariable(diag_var1)
        diag_ev = DiagLazyVariable(diag_var2).evaluate()

        # Forward
        res = diag_lv.inv_matmul(Variable(test_mat))
        actual = gpytorch.inv_matmul(diag_ev, Variable(test_mat))
        self.assertLess(torch.norm(res.data - actual.data), 1e-4)

        # Backward
        res.sum().backward()
        actual.sum().backward()
        self.assertLess(
            torch.norm(diag_var1.grad.data - diag_var2.grad.data),
            1e-3,
        )
 def exact_posterior_covar(self, test_train_covar, train_test_covar,
                           test_test_covar):
     # TODO: Add a diagonal only mode / use implicit math
     train_test_covar = train_test_covar.evaluate()
     test_train_covar = train_test_covar.t()
     test_test_covar = test_test_covar.evaluate()
     gpytorch.functions.max_cg_iterations *= 10
     test_test_covar_correction = torch.matmul(
         test_train_covar, gpytorch.inv_matmul(self.var, train_test_covar))
     gpytorch.functions.max_cg_iterations /= 10
     return test_test_covar.sub(test_test_covar_correction)
    def exact_posterior_covar(self, test_train_covar, train_test_covar,
                              test_test_covar):
        # TODO: Add a diagonal only mode / use implicit math
        if isinstance(train_test_covar, LazyVariable):
            train_test_covar = train_test_covar.evaluate()
        if isinstance(test_train_covar, LazyVariable):
            test_train_covar = train_test_covar.t()
        if isinstance(self.var, LazyVariable):
            test_test_covar = test_test_covar.evaluate()

        test_test_covar_correction = torch.mm(
            test_train_covar, gpytorch.inv_matmul(self.var, train_test_covar))
        return test_test_covar.sub(test_test_covar_correction)
Ejemplo n.º 15
0
    def test_forward_inv_mv(self):
        a = torch.Tensor([
            [5, -3, 0],
            [-3, 5, 0],
            [0, 0, 2],
        ])
        b = torch.randn(3)
        actual = a.inverse().mv(b)

        a_var = Variable(a)
        b_var = Variable(b)
        out_var = gpytorch.inv_matmul(a_var, b_var)
        res = out_var.data

        self.assertLess(torch.norm(actual - res), 1e-4)
Ejemplo n.º 16
0
def test_forward_inv_mm():
    for n_cols in [2, 3, 4]:
        a = torch.Tensor([
            [5, -3, 0],
            [-3, 5, 0],
            [0, 0, 2],
        ])
        b = torch.randn(3, n_cols)
        actual = a.inverse().mm(b)

        a_var = Variable(a)
        b_var = Variable(b)
        out_var = gpytorch.inv_matmul(a_var, b_var)
        res = out_var.data

        assert (torch.norm(actual - res) < 1e-4)
Ejemplo n.º 17
0
def loss_fcn(output, labels, idx, S, coeffs, device, add_logdet):
    rL = labels - output
    S = S.to_dense()
    Gamma = (torch.eye(S.size(0)).to(device) -
             torch.tanh(coeffs[0]) * S.to(device)) * torch.exp(coeffs[1])
    cp_idx = setdiff(len(S), idx)

    loss1 = rL.dot(
        matmul(Gamma[idx, :][:, idx], rL) - matmul(
            Gamma[idx, :][:, cp_idx],
            inv_matmul(Gamma[cp_idx, :][:, cp_idx],
                       matmul(Gamma[cp_idx, :][:, idx], rL))))
    loss2 = 0.
    if add_logdet: loss2 = logdet(Gamma) - logdet(Gamma[cp_idx, :][:, cp_idx])
    l = loss1 - loss2
    return l / len(idx)
Ejemplo n.º 18
0
def loss(output, labels, idx, S, coeffs, add_logdet):
    output = output.view(-1)
    rL = labels[idx] - output[idx]
    S = S.to_dense()

    Gamma = (I - torch.tanh(coeffs[0]) * S) * torch.exp(coeffs[1])
    cp_idx = setdiff(len(S), idx)
    loss1 = rL.dot(
        matmul(Gamma[idx, :][:, idx], rL) - matmul(
            Gamma[idx, :][:, cp_idx],
            inv_matmul(Gamma[cp_idx, :][:, cp_idx],
                       matmul(Gamma[cp_idx, :][:, idx], rL))))
    loss2 = torch.Tensor([0.]).cuda() if args.cuda else torch.Tensor([0.])
    if add_logdet: loss2 = logdet(Gamma) - logdet(Gamma[cp_idx, :][:, cp_idx])
    l = loss1 - loss2

    return l / len(idx)
Ejemplo n.º 19
0
def loss_fcn(output, labels, idx, S, coeffs, add_logdet):
    output, labels = output.squeeze(), labels.squeeze()
    rL = labels - output
    S = S.to_dense()
    Gamma = (torch.eye(S.size(0)).cuda() -
             torch.tanh(coeffs[0]) * S.cuda()) * torch.exp(coeffs[1])
    cp_idx = setdiff(len(S), idx)

    loss1 = rL.dot(
        matmul(Gamma[idx, :][:, idx], rL) - matmul(
            Gamma[idx, :][:, cp_idx],
            inv_matmul(Gamma[cp_idx, :][:, cp_idx],
                       matmul(Gamma[cp_idx, :][:, idx], rL))))

    loss2 = torch.Tensor([0.]).cuda()
    if add_logdet: loss2 = logdet(Gamma) - logdet(Gamma[cp_idx, :][:, cp_idx])
    l = loss1 - loss2
    return l / len(idx)
Ejemplo n.º 20
0
def test_backward_inv_mv():
    a = torch.Tensor([
        [5, -3, 0],
        [-3, 5, 0],
        [0, 0, 2],
    ])
    b = torch.ones(3, 3).fill_(2)
    c = torch.randn(3)
    actual_a_grad = -torch.ger(a.inverse().mul_(0.5).mv(torch.ones(3)),
                               a.inverse().mul_(0.5).mv(c)) * 2 * 2
    actual_c_grad = (a.inverse() / 2).t().mv(torch.ones(3)) * 2

    a_var = Variable(a, requires_grad=True)
    c_var = Variable(c, requires_grad=True)
    out_var = a_var.mul(Variable(b))
    out_var = gpytorch.inv_matmul(out_var, c_var)
    out_var = out_var.sum() * 2
    out_var.backward()
    a_res = a_var.grad.data
    c_res = c_var.grad.data

    assert (torch.norm(actual_a_grad - a_res) < 1e-4)
    assert (torch.norm(actual_c_grad - c_res) < 1e-4)
 def exact_posterior_alpha(self, train_mean, train_y):
     res = gpytorch.inv_matmul(self.var, train_y - train_mean)
     return res
 def variational_posterior_alpha(self, variational_mean):
     return gpytorch.inv_matmul(self.var, variational_mean)
    def test_inv_matmul_batch(self):
        base_lazy_variable_mat = torch.randn(6, 6)
        base_lazy_variable_mat = ((base_lazy_variable_mat.t().matmul(
            base_lazy_variable_mat)).unsqueeze(0).repeat(5, 1, 1))
        test_matrix = torch.randn(5, 3, 4)

        left_interp_indices = Variable(torch.LongTensor(
            [[2, 3], [3, 4], [4, 5]]).unsqueeze(0).repeat(5, 1, 1),
                                       requires_grad=True)
        left_interp_values = Variable(torch.Tensor(
            [[1, 2], [0.5, 1], [1, 3]]).unsqueeze(0).repeat(5, 1, 1),
                                      requires_grad=True)
        right_interp_indices = Variable(torch.LongTensor(
            [[2, 3], [3, 4], [4, 5]]).unsqueeze(0).repeat(5, 1, 1),
                                        requires_grad=True)
        right_interp_values = Variable(torch.Tensor(
            [[1, 2], [0.5, 1], [1, 3]]).unsqueeze(0).repeat(5, 1, 1),
                                       requires_grad=True)
        left_interp_values_copy = Variable(left_interp_values.data,
                                           requires_grad=True)
        right_interp_values_copy = Variable(right_interp_values.data,
                                            requires_grad=True)

        base_lazy_variable = Variable(base_lazy_variable_mat,
                                      requires_grad=True)
        base_lazy_variable_copy = Variable(base_lazy_variable_mat,
                                           requires_grad=True)
        test_matrix_var = Variable(test_matrix, requires_grad=True)
        test_matrix_var_copy = Variable(test_matrix, requires_grad=True)

        interp_lazy_var = InterpolatedLazyVariable(
            NonLazyVariable(base_lazy_variable),
            left_interp_indices,
            left_interp_values,
            right_interp_indices,
            right_interp_values,
        )
        res = interp_lazy_var.inv_matmul(test_matrix_var)

        left_matrix_comps = []
        right_matrix_comps = []
        for i in range(5):
            left_matrix_comp = Variable(torch.zeros(3, 6))
            right_matrix_comp = Variable(torch.zeros(3, 6))
            left_matrix_comp.scatter_(1, left_interp_indices[i],
                                      left_interp_values_copy[i])
            right_matrix_comp.scatter_(1, right_interp_indices[i],
                                       right_interp_values_copy[i])
            left_matrix_comps.append(left_matrix_comp.unsqueeze(0))
            right_matrix_comps.append(right_matrix_comp.unsqueeze(0))
        left_matrix = torch.cat(left_matrix_comps)
        right_matrix = torch.cat(right_matrix_comps)
        actual_mat = left_matrix.matmul(base_lazy_variable_copy).matmul(
            right_matrix.transpose(-1, -2))
        actual = gpytorch.inv_matmul(actual_mat, test_matrix_var_copy)

        self.assertTrue(approx_equal(res.data, actual.data))

        # Backward pass
        res.sum().backward()
        actual.sum().backward()

        self.assertTrue(
            approx_equal(base_lazy_variable.grad.data,
                         base_lazy_variable_copy.grad.data))
        self.assertTrue(
            approx_equal(left_interp_values.grad.data,
                         left_interp_values_copy.grad.data))
Ejemplo n.º 24
0
    def test_inv_matmul_batch(self):
        base_lazy_tensor = torch.randn(6, 6)
        base_lazy_tensor = (
            base_lazy_tensor.t().matmul(base_lazy_tensor)).unsqueeze(0).repeat(
                5, 1, 1)
        base_lazy_tensor_copy = base_lazy_tensor.clone()
        base_lazy_tensor.requires_grad = True
        base_lazy_tensor_copy.requires_grad = True

        test_matrix_tensor = torch.randn(5, 3, 4)
        test_matrix_tensor_copy = test_matrix_tensor.clone()
        test_matrix_tensor.requires_grad = True
        test_matrix_tensor_copy.requires_grad = True

        left_interp_indices = torch.LongTensor([[2, 3], [3, 4],
                                                [4, 5]]).unsqueeze(0).repeat(
                                                    5, 1, 1)
        left_interp_values = torch.tensor(
            [[1, 2], [0.5, 1], [1, 3]],
            dtype=torch.float).unsqueeze(0).repeat(5, 1, 1)
        left_interp_values_copy = left_interp_values.clone()
        left_interp_values.requires_grad = True
        left_interp_values_copy.requires_grad = True

        right_interp_indices = torch.LongTensor([[2, 3], [3, 4],
                                                 [4, 5]]).unsqueeze(0).repeat(
                                                     5, 1, 1)
        right_interp_values = torch.tensor(
            [[1, 2], [0.5, 1], [1, 3]],
            dtype=torch.float).unsqueeze(0).repeat(5, 1, 1)
        right_interp_values_copy = right_interp_values.clone()
        right_interp_values.requires_grad = True
        right_interp_values_copy.requires_grad = True

        interp_lazy_tensor = InterpolatedLazyTensor(
            NonLazyTensor(base_lazy_tensor),
            left_interp_indices,
            left_interp_values,
            right_interp_indices,
            right_interp_values,
        )
        res = interp_lazy_tensor.inv_matmul(test_matrix_tensor)

        left_matrix_comps = []
        right_matrix_comps = []
        for i in range(5):
            left_matrix_comp = torch.zeros(3, 6)
            right_matrix_comp = torch.zeros(3, 6)
            left_matrix_comp.scatter_(1, left_interp_indices[i],
                                      left_interp_values_copy[i])
            right_matrix_comp.scatter_(1, right_interp_indices[i],
                                       right_interp_values_copy[i])
            left_matrix_comps.append(left_matrix_comp.unsqueeze(0))
            right_matrix_comps.append(right_matrix_comp.unsqueeze(0))
        left_matrix = torch.cat(left_matrix_comps)
        right_matrix = torch.cat(right_matrix_comps)
        actual_mat = left_matrix.matmul(base_lazy_tensor_copy).matmul(
            right_matrix.transpose(-1, -2))
        actual = gpytorch.inv_matmul(actual_mat, test_matrix_tensor_copy)

        self.assertTrue(approx_equal(res, actual))

        # Backward pass
        res.sum().backward()
        actual.sum().backward()

        self.assertTrue(
            approx_equal(base_lazy_tensor.grad, base_lazy_tensor_copy.grad))
        self.assertTrue(
            approx_equal(left_interp_values.grad,
                         left_interp_values_copy.grad))
Ejemplo n.º 25
0
    def __call__(self, inputs, **kwargs):
        if self.exact_inference:
            raise RuntimeError('At the moment, the InducingPointModule only works for variational inference')

        # Training mode: optimizing
        if self.training:
            if not torch.equal(inputs.data, self._inducing_points):
                raise RuntimeError('At the moment, we assume that the inducing_points are the'
                                   ' training inputs.')

            prior_output = self.prior_output()
            # Initialize variational parameters, if necessary
            if not self.variational_params_initialized[0]:
                mean_init = prior_output.mean().data
                chol_covar_init = torch.eye(len(mean_init)).type_as(mean_init)
                self.variational_mean.data.copy_(mean_init)
                self.chol_variational_covar.data.copy_(chol_covar_init)
                self.variational_params_initialized.fill_(1)

            variational_output = self.variational_output()
            new_variational_strategy = MVNVariationalStrategy(variational_output, prior_output)
            self.update_variational_strategy('inducing_point_strategy', new_variational_strategy)
            return variational_output

        # Posterior mode
        elif self.posterior:
            variational_output = self.variational_output()

            n_induc = len(self._inducing_points)
            full_inputs = torch.cat([Variable(self._inducing_points), inputs])
            full_output = super(InducingPointModule, self).__call__(full_inputs)
            full_mean, full_covar = full_output.representation()

            induc_mean = full_mean[:n_induc]
            test_mean = full_mean[n_induc:]
            induc_induc_covar = full_covar[:n_induc, :n_induc]
            induc_test_covar = full_covar[:n_induc, n_induc:]
            test_induc_covar = full_covar[n_induc:, :n_induc]
            test_test_covar = full_covar[n_induc:, n_induc:]

            # Calculate posterior components
            if not self.has_computed_alpha[0]:
                alpha = gpytorch.inv_matmul(induc_induc_covar, variational_output.mean() - induc_mean)
                self.alpha.copy_(alpha.data)
                self.has_computed_alpha.fill_(1)
            else:
                alpha = Variable(self.alpha)

            test_mean = torch.add(test_mean, test_induc_covar.matmul(alpha))

            # Test covariance
            if isinstance(induc_test_covar, LazyVariable):
                induc_test_covar = induc_test_covar.evaluate()
            inv_product = gpytorch.inv_matmul(induc_induc_covar, induc_test_covar)
            factor = variational_output.covar().chol_matmul(inv_product)
            right_factor = factor - inv_product
            left_factor = (factor - induc_test_covar).transpose(-1, -2)

            if not isinstance(test_test_covar, LazyVariable):
                test_test_covar = NonLazyVariable(test_test_covar)
            test_covar = test_test_covar + MatmulLazyVariable(left_factor, right_factor)

            output = GaussianRandomVariable(test_mean, test_covar)

            return output

        # Prior mode
        else:
            return super(InducingPointModule, self).__call__(inputs)
    def __call__(self, inputs, **kwargs):
        # Training mode: optimizing
        if self.training:
            if not torch.equal(inputs.data, self.inducing_points):
                raise RuntimeError('You must train on the training inputs!')

            prior_output = self.prior_output()
            # Initialize variational parameters, if necessary
            if not self.variational_params_initialized[0]:
                mean_init = prior_output.mean().data
                chol_covar_init = torch.eye(len(mean_init)).type_as(mean_init)
                self.variational_mean.data.copy_(mean_init)
                self.chol_variational_covar.data.copy_(chol_covar_init)
                self.variational_params_initialized.fill_(1)

            variational_output = self.variational_output()
            new_variational_strategy = MVNVariationalStrategy(
                variational_output, prior_output)
            self.update_variational_strategy('inducing_point_strategy',
                                             new_variational_strategy)
            return variational_output

        # Posterior mode
        else:
            variational_output = self.variational_output()

            n_induc = len(self.inducing_points)
            full_inputs = torch.cat([Variable(self.inducing_points), inputs])
            full_output = super(VariationalGP, self).__call__(full_inputs)
            full_mean, full_covar = full_output.representation()

            induc_mean = full_mean[:n_induc]
            test_mean = full_mean[n_induc:]
            induc_induc_covar = full_covar[:n_induc, :n_induc]
            induc_test_covar = full_covar[:n_induc, n_induc:]
            test_induc_covar = full_covar[n_induc:, :n_induc]
            test_test_covar = full_covar[n_induc:, n_induc:]

            # Compute alpha cache
            if not self.has_computed_alpha:
                self.alpha = gpytorch.inv_matmul(
                    induc_induc_covar,
                    variational_output.mean() - induc_mean)
                self.has_computed_alpha = True

            # Compute chol cache, if necessary
            if not self.has_computed_root and beta_features.fast_pred_var.on():
                if not isinstance(induc_induc_covar, LazyVariable):
                    induc_induc_covar = NonLazyVariable(induc_induc_covar)
                self.prior_root_inv = induc_induc_covar.root_inv_decomposition(
                )

                chol_variational_output = variational_output.covar(
                ).root.evaluate()
                self.variational_root = gpytorch.inv_matmul(
                    induc_induc_covar, chol_variational_output)
                self.has_computed_root = True

            # Test mean
            predictive_mean = torch.add(test_mean,
                                        test_induc_covar.matmul(self.alpha))

            # Test covariance
            if not isinstance(test_test_covar, LazyVariable):
                predictive_covar = NonLazyVariable(test_test_covar)
            else:
                predictive_covar = test_test_covar
            if beta_features.fast_pred_var.on():
                correction = RootLazyVariable(
                    test_induc_covar.matmul(self.prior_root_inv)).mul(-1)
                correction = correction + RootLazyVariable(
                    test_induc_covar.matmul(self.variational_root))
                predictive_covar = predictive_covar + correction
            else:
                if isinstance(induc_test_covar, LazyVariable):
                    induc_test_covar = induc_test_covar.evaluate()
                inv_product = gpytorch.inv_matmul(induc_induc_covar,
                                                  induc_test_covar)
                factor = variational_output.covar().root_decomposition(
                ).matmul(inv_product)
                right_factor = factor - inv_product
                left_factor = (factor - induc_test_covar).transpose(-1, -2)
                predictive_covar = predictive_covar + MatmulLazyVariable(
                    left_factor, right_factor)

            output = GaussianRandomVariable(predictive_mean, predictive_covar)
            return output