Ejemplo n.º 1
0
 def _get_grasp_policy(self):
     """
     Get the grasping policy based on the model
     Returns
     ----------
     grasping_policy: type `gqcnn.grasping.policy.policy.GraspingPolicy`
         Grasping policy to use.
     """
     # Get grasping policy
     if "FC" in self.model:
         if self.policy_config["type"] == "fully_conv_suction":
             self.grasping_policy = FullyConvolutionalGraspingPolicySuction(
                 self.policy_config)
         elif self.policy_config["type"] == "fully_conv_pj":
             self.grasping_policy = FullyConvolutionalGraspingPolicyParallelJaw(
                 self.policy_config)
         else:
             raise ValueError(
                 "Invalid fully-convolutional policy type: {}".format(
                     self.policy_config["type"]))
     else:
         policy_type = "cem"
         if "type" in self.policy_config:
             policy_type = self.policy_config["type"]
         if policy_type == "ranking":
             self.grasping_policy = RobustGraspingPolicy(self.policy_config)
         elif policy_type == "cem":
             self.grasping_policy = CrossEntropyRobustGraspingPolicy(
                 self.policy_config)
         else:
             raise ValueError("Invalid policy type: {}".format(policy_type))
Ejemplo n.º 2
0
        if policy_config["type"] == "fully_conv_suction":
            policy = FullyConvolutionalGraspingPolicySuction(policy_config)
        elif policy_config["type"] == "fully_conv_pj":
            policy = FullyConvolutionalGraspingPolicyParallelJaw(policy_config)
        else:
            raise ValueError(
                "Invalid fully-convolutional policy type: {}".format(
                    policy_config["type"]))
    else:
        policy_type = "cem"
        if "type" in policy_config:
            policy_type = policy_config["type"]
        if policy_type == "ranking":
            policy = RobustGraspingPolicy(policy_config)
        elif policy_type == "cem":
            policy = CrossEntropyRobustGraspingPolicy(policy_config)
        else:
            raise ValueError("Invalid policy type: {}".format(policy_type))

    # Query policy.
    policy_start = time.time()
    action = policy(state)
    logger.info("Planning took %.3f sec" % (time.time() - policy_start))

    # Vis final grasp.
    if policy_config["vis"]["final_grasp"]:
        vis.figure(size=(10, 10))
        vis.imshow(rgbd_im.depth,
                   vmin=policy_config["vis"]["vmin"],
                   vmax=policy_config["vis"]["vmax"])
        vis.grasp(action.grasp, scale=2.5, show_center=False, show_axis=True)
Ejemplo n.º 3
0
                FullyConvolutionalGraspingPolicySuction(policy_cfg)
        elif policy_cfg["type"] == "fully_conv_pj":
            grasping_policy = \
                FullyConvolutionalGraspingPolicyParallelJaw(policy_cfg)
        else:
            raise ValueError(
                "Invalid fully-convolutional policy type: {}".format(
                    policy_cfg["type"]))
    else:
        policy_type = "cem"
        if "type" in policy_cfg:
            policy_type = policy_cfg["type"]
        if policy_type == "ranking":
            grasping_policy = RobustGraspingPolicy(policy_cfg)
        elif policy_type == "cem":
            grasping_policy = CrossEntropyRobustGraspingPolicy(policy_cfg)
        else:
            raise ValueError("Invalid policy type: {}".format(policy_type))

    # Create a grasp planner.
    grasp_planner = GraspPlanner(cfg, cv_bridge, grasping_policy,
                                 grasp_pose_publisher)

    # Initialize the ROS service.
    grasp_planning_service = rospy.Service("grasp_planner", GQCNNGraspPlanner,
                                           grasp_planner.plan_grasp)
    grasp_planning_service_bb = rospy.Service("grasp_planner_bounding_box",
                                              GQCNNGraspPlannerBoundingBox,
                                              grasp_planner.plan_grasp_bb)
    grasp_planning_service_segmask = rospy.Service(
        "grasp_planner_segmask", GQCNNGraspPlannerSegmask,
Ejemplo n.º 4
0
#%%
rosco.subscribe_synced_rgbd('/camera/color/image_raw/', '/camera/depth/image_rect_raw/')
#rosco.subscribe_synced_rgbd('/camera/color/image_raw/', '/camera/depth/color/points')
#rosco.subscribe_synced_rgbd('/camera/color/image_raw/', '/camera/aligned_depth_to_color/image_raw/')
#%%
intr = rosco.get_camera_intrinsics('/camera/color/camera_info')
#%%
intr
#rosco.threaded_synced_rgbd_cb('/camera/color/image_raw/', '/camera/depth/image_rect_raw/')

#%%
camera_int = CameraIntrinsics(frame='pcl', fx=intr['fx'], fy=intr['fy'], cx=intr['cx'], cy=intr['cy'], height=intr['height'], width=intr['width'])
#%%
cfg = YamlConfig('cfg/gqcnn_pj_dbg.yaml')
#%%
grasp_policy = CrossEntropyRobustGraspingPolicy(cfg['policy'])
# grasp_policy = RobustGraspingPolicy(cfg['policy'])
#%%
img = rosco.rgb
d = rosco.depth
#%%
plt.imshow(img)
#%%
plt.imshow(d)
#print(img)
#print(d)
#%%
color_im = ColorImage(img.astype(np.uint8), encoding="bgr8", frame='pcl')
depth_im = DepthImage(d.astype(np.float32), frame='pcl')
color_im = color_im.inpaint(rescale_factor=cfg['inpaint_rescale_factor'])
depth_im = depth_im.inpaint(rescale_factor=cfg['inpaint_rescale_factor'])
Ejemplo n.º 5
0
    def configure(self, model_dir, fully_conv):
        """Configure model and grasping policy

        Args:
            model_config_file (str): path to model configuration file of type config.json
            fully_conv (bool): if fully-convolutional network
            grasp_offset (np.array): 3-dim array of values to adjust every pose in the eef ref frame

        """

        # read model config.json file
        try:
            model_config = json.load(open(os.path.join(model_dir, "config.json"), "r"))
        except Exception:
            raise ValueError(
                    "Cannot open model config file {}".format(os.path.join(model_dir, "config.json")))

        # --- set gripper mode --- #
        if "gripper_mode" in model_config["gqcnn"]:
            gripper_mode = model_config["gqcnn"]["gripper_mode"]

        else:
            input_data_mode = model_config["gqcnn_config"]["input_data_mode"]

            if input_data_mode == "tf_image":
                gripper_mode = GripperMode.LEGACY_PARALLEL_JAW

            elif input_data_mode == "parallel_jaw":
                gripper_mode = GripperMode.PARALLEL_JAW

            else:
                raise ValueError(
                    "Input data mode {} not supported!".format(input_data_mode))

        if (gripper_mode != GripperMode.LEGACY_PARALLEL_JAW and gripper_mode != GripperMode.PARALLEL_JAW):
            raise ValueError("Gripper mode {} not supported!".format(gripper_mode))

        # --- Load config --- #
        config_file = "cfg/fc_gqcnn_pj.yaml" if fully_conv else "cfg/gqcnn_pj.yaml"

        try:
            config_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), config_file)

        except Exception:
            print("cannot open configuration file {}".format(
                  os.path.join(os.path.dirname(os.path.realpath(__file__)), config_file)))

        # Read config
        self.cfg = YamlConfig(config_filename)

        # --- Define the grasping policy --- #
        policy_cfg = self.cfg["policy"]
        policy_cfg["metric"]["gqcnn_model"] = model_dir

        policy_type = "cem"
        if "type" in policy_cfg:
            policy_type = policy_cfg["type"]

        if policy_type == "fully_conv_pj":
            self.grasping_policy = FullyConvolutionalGraspingPolicyParallelJaw(policy_cfg)

        elif policy_type == "ranking":
            self.grasping_policy = RobustGraspingPolicy(policy_cfg)

        elif policy_type == "cem":
            self.grasping_policy = CrossEntropyRobustGraspingPolicy(policy_cfg)

        else:
            fc = "fully-convolutional" if fully_conv else ""
            raise ValueError("Invalid {} policy type: {}".format(fc, policy_type))

        # --- Set minimum input dimensions --- #
        if policy_type == "fully_conv_pj":
            self.min_width = self.cfg["policy"]["gqcnn_recep_w"]
            self.min_height = self.cfg["policy"]["gqcnn_recep_h"]

        else:
            pad = max(math.ceil(np.sqrt(2) * (float(self.cfg["policy"]["metric"]["crop_width"]) / 2)),
                      math.ceil(np.sqrt(2) * (float(self.cfg["policy"]["metric"]["crop_height"]) / 2)))

            self.min_width = 2 * pad + self.cfg["policy"]["metric"]["crop_width"]
            self.min_height = 2 * pad + self.cfg["policy"]["metric"]["crop_height"]
    def prepare_dexnet(self):
        # Get configs.
        model_config = json.load(
            open(os.path.join(self.model_path, "config.json"), "r"))
        # self.model_config = model_config
        # try:
        #     gqcnn_config = model_config["gqcnn"]
        #     gripper_mode = gqcnn_config["gripper_mode"]
        # except KeyError:
        #     gqcnn_config = model_config["gqcnn_config"]
        #     input_data_mode = gqcnn_config["input_data_mode"]
        #     if input_data_mode == "tf_image":
        #         gripper_mode = GripperMode.LEGACY_PARALLEL_JAW
        #     elif input_data_mode == "tf_image_suction":
        #         gripper_mode = GripperMode.LEGACY_SUCTION
        #     elif input_data_mode == "suction":
        #         gripper_mode = GripperMode.SUCTION
        #     elif input_data_mode == "multi_suction":
        #         gripper_mode = GripperMode.MULTI_SUCTION
        #     elif input_data_mode == "parallel_jaw":
        #         gripper_mode = GripperMode.PARALLEL_JAW
        #     else:
        #         raise ValueError(
        #             "Input data mode {} not supported!".format(input_data_mode))

        # Read config.
        config = YamlConfig(self.config_filename)
        self.inpaint_rescale_factor = config["inpaint_rescale_factor"]
        policy_config = config["policy"]
        self.policy_config = policy_config

        # Make relative paths absolute.
        if "gqcnn_model" in policy_config["metric"]:
            policy_config["metric"]["gqcnn_model"] = self.model_path
            if not os.path.isabs(policy_config["metric"]["gqcnn_model"]):
                policy_config["metric"]["gqcnn_model"] = os.path.join(
                    os.path.dirname(os.path.realpath(__file__)),
                    policy_config["metric"]["gqcnn_model"])

        # Setup sensor.
        self.camera_intr = CameraIntrinsics.load(self.camera_intr_filename)
        # Init policy.
        # Set input sizes for fully-convolutional policy.
        if self.fully_conv:
            policy_config["metric"]["fully_conv_gqcnn_config"][
                "im_height"] = self.height
            policy_config["metric"]["fully_conv_gqcnn_config"][
                "im_width"] = self.width

        if self.fully_conv:
            # TODO(vsatish): We should really be doing this in some factory policy.
            if policy_config["type"] == "fully_conv_suction":
                self.policy = FullyConvolutionalGraspingPolicySuction(
                    policy_config)
            elif policy_config["type"] == "fully_conv_pj":
                self.policy = FullyConvolutionalGraspingPolicyParallelJaw(
                    policy_config)
            else:
                raise ValueError(
                    "Invalid fully-convolutional policy type: {}".format(
                        policy_config["type"]))
        else:
            policy_type = "cem"
            if "type" in policy_config:
                policy_type = policy_config["type"]
            if policy_type == "ranking":
                self.policy = RobustGraspingPolicy(policy_config)
            elif policy_type == "cem":
                self.policy = CrossEntropyRobustGraspingPolicy(policy_config)
            else:
                raise ValueError("Invalid policy type: {}".format(policy_type))
Ejemplo n.º 7
0
    def __init__(self, config: Config, detector=None):

        self.config = config
        self.policy_name = config.policy_name
        self.max_path_length = config.max_path_length

        self.elevation_max = config.elevation_max
        self.elevation_min = config.elevation_min

        self.roll_max = config.roll_max
        self.roll_min = config.roll_min

        self.save_video = False  #True #False
        if self.save_video:
            self.imgs = []

        #grasp_sampler_config = grasp_sampler.GraspSampler.Config()
        #self.grasp_sampler = grasp_sampler.GraspSampler(grasp_sampler_config)

        model_name = "gqcnn_example_pj_fish"  #"GQCNN-4.0-PJ"
        fully_conv = False
        gqcnn_dir = "/home/htung/2020/gqcnn/"

        # Set model if provided.
        model_dir = os.path.join(gqcnn_dir, "models")
        model_path = os.path.join(model_dir, model_name)
        config_filename = None

        # Get configs.
        model_config = json.load(
            open(os.path.join(model_path, "config.json"), "r"))

        try:
            gqcnn_config = model_config["gqcnn"]
            gripper_mode = gqcnn_config["gripper_mode"]
        except KeyError:
            gqcnn_config = model_config["gqcnn_config"]
            input_data_mode = gqcnn_config["input_data_mode"]
            if input_data_mode == "tf_image":
                gripper_mode = GripperMode.LEGACY_PARALLEL_JAW
            elif input_data_mode == "tf_image_suction":
                gripper_mode = GripperMode.LEGACY_SUCTION
            elif input_data_mode == "suction":
                gripper_mode = GripperMode.SUCTION
            elif input_data_mode == "multi_suction":
                gripper_mode = GripperMode.MULTI_SUCTION
            elif input_data_mode == "parallel_jaw":  # this is picked
                gripper_mode = GripperMode.PARALLEL_JAW
            else:
                raise ValueError("Input data mode {} not supported!".format(
                    input_data_mode))

        config_filename = os.path.join(gqcnn_dir, "cfg/examples/gqcnn_pj.yaml")

        # Read config.
        config = YamlConfig(config_filename)
        inpaint_rescale_factor = config["inpaint_rescale_factor"]
        policy_config = config["policy"]

        # original_gripper_width = 0.05
        original_gripper_width = policy_config["gripper_width"]

        self.real_gripper_width = 0.112  #0.15 #0.112
        self.rescale_factor = original_gripper_width / self.real_gripper_width
        #self.config.camera_fov_y = self.config.camera_fov_y * self.rescale_factor

        #policy_config["gripper_width"] = 0.112
        # gripper distance to the grasp point
        # min_depth_offset = config['policy']["sampling"]["min_depth_offset"] = 0.015
        # max_depth_offset = config['policy']["sampling"]["max_depth_offset"] = 0.05

        # Make relative paths absolute.
        if "gqcnn_model" in policy_config["metric"]:
            policy_config["metric"]["gqcnn_model"] = model_path
            if not os.path.isabs(policy_config["metric"]["gqcnn_model"]):
                policy_config["metric"]["gqcnn_model"] = os.path.join(
                    os.path.dirname(os.path.realpath(__file__)), "..",
                    policy_config["metric"]["gqcnn_model"])

        # Set input sizes for fully-convolutional policy.
        if fully_conv:
            policy_config["metric"]["fully_conv_gqcnn_config"][
                "im_height"] = depth_im.shape[0]
            policy_config["metric"]["fully_conv_gqcnn_config"][
                "im_width"] = depth_im.shape[1]

        # Init policy.
        self.policy_config = policy_config
        self.policy_config["vis"]["vmin"] = 0
        self.policy_config["vis"]["vmax"] = 0.5

        if self.config.data_collection_mode:
            self.policy_config["num_iters"] = 0
            self.policy_config["random_sample"] = True

            self.gqcnn_image_size = 96
            import collections

            data_config = collections.OrderedDict()
            data_config['datapoints_per_file'] = 50
            data_config['fields'] = collections.OrderedDict()
            data_config['fields']["grasp_metrics"] = dict()
            data_config['fields']["grasp_metrics"]['dtype'] = "float32"

            data_config['fields']["grasps"] = dict()
            data_config['fields']["grasps"]['dtype'] = "float32"
            data_config['fields']["grasps"]['height'] = 6

            data_config['fields']["split"] = dict()
            data_config['fields']["split"]['dtype'] = "uint8"

            data_config['fields']["tf_depth_ims"] = dict()
            data_config['fields']["tf_depth_ims"]['dtype'] = "float32"
            data_config['fields']["tf_depth_ims"][
                'height'] = self.gqcnn_image_size
            data_config['fields']["tf_depth_ims"][
                'width'] = self.gqcnn_image_size
            data_config['fields']["tf_depth_ims"]['channels'] = 1

            from autolab_core import TensorDataset
            self.tensordata = TensorDataset(self.config.save_data_name,
                                            data_config)

        #import ipdb; ipdb.set_trace()
        policy_type = "cem"
        if "type" in policy_config:
            policy_type = policy_config["type"]
        if policy_type == "ranking":
            self.policy = RobustGraspingPolicy(policy_config)
        elif policy_type == "cem":
            self.policy = CrossEntropyRobustGraspingPolicy(policy_config)
        else:
            raise ValueError("Invalid policy type: {}".format(policy_type))