Ejemplo n.º 1
0
    def parse_input(self, X):
        """Parse and create features for the `subgraph_matching` kernel.

        Parameters
        ----------
        X : iterable
            For the input to pass the test, we must have:
            Each element must be an iterable with at most three features and at
            least one. The first that is obligatory is a valid graph structure
            (adjacency matrix or edge_dictionary) while the second is
            node_labels and the third edge_labels (that correspond to the given
            graph format). A valid input also consists of graph type objects.

        Returns
        -------
        out : list
            The extracted adjacency matrices for any given input.

        """
        if not isinstance(X, collections.Iterable):
            raise TypeError('input must be an iterable\n')
        else:
            i = 0
            out = list()
            for (idx, x) in enumerate(iter(X)):
                is_iter = False
                if isinstance(x, collections.Iterable):
                    is_iter = True
                    x = list(x)

                if type(x) is Graph:
                    g = Graph(
                        x.get_adjacency_matrix(),
                        x.get_labels(purpose="adjacency"),
                        x.get_labels(purpose="adjacency", label_type="edge"),
                        self._graph_format)
                elif is_iter and len(x) in [0, 3]:
                    x = list(x)
                    if len(x) == 0:
                        warnings.warn('Ignoring empty element' +
                                      ' on index: ' + str(idx))
                        continue
                    elif len(x) == 3:
                        g = Graph(x[0], x[1], x[2], "adjacency")
                        g.change_format(self._graph_format)
                else:
                    raise TypeError('each element of X must be either a ' +
                                    'graph object or a list with at least ' +
                                    'a graph like object and node, ' +
                                    'edge labels dict \n')
                n = g.nv()
                E = g.get_edge_dictionary()
                L = g.get_labels(purpose="dictionary",
                                 return_none=(self.kv is None))
                Le = g.get_labels(purpose="dictionary",
                                  label_type="edge",
                                  return_none=(self.ke is None))
                Er = set(
                    (a, b) for a in E.keys() for b in E[a].keys() if a != b)

                i += 1
                out.append((n, Er, L, Le))

            if i == 0:
                raise ValueError('parsed input is empty')
            return out
Ejemplo n.º 2
0
    def parse_input(self, X):
        """Parse and create features for the attributed propation kernel.

        Parameters
        ----------
        X : iterable
            For the input to pass the test, we must have:
            Each element must be an iterable with at most three features and at
            least one. The first that is obligatory is a valid graph structure
            (adjacency matrix or edge_dictionary) while the second is
            node_labels and the third edge_labels (that correspond to the given
            graph format). A valid input also consists of graph type objects.

        Returns
        -------
        local_values : dict
            A dictionary of pairs between each input graph and a bins where the
            sampled graphlets have fallen.

        """
        if not isinstance(X, collections.Iterable):
            raise ValueError('input must be an iterable\n')
        else:
            # The number of parsed graphs
            n = 0
            transition_matrix = dict()
            indexes = [0]
            Attr = list()
            for (idx, x) in enumerate(iter(X)):
                is_iter = isinstance(x, collections.Iterable)
                if is_iter:
                    x = list(x)
                if is_iter and len(x) in [0, 2, 3, 4]:
                    if len(x) == 0:
                        warnings.warn('Ignoring empty element on ' +
                                      'index: ' + str(idx))
                        continue
                    if len(x) == 2 and type(x[0]) is Graph:
                        g, T = x
                    else:
                        g = Graph(x[0], x[1], {}, self._graph_format)
                        if len(x) == 4:
                            T = x[3]
                        else:
                            T = None
                elif type(x) is Graph:
                    g, T = x, None
                else:
                    raise ValueError('Each element of X must be either a ' +
                                     'Graph or an iterable with at least 2 ' +
                                     'and at most 4 elements\n')

                if T is not None:
                    if T.shape[0] != T.shape[1]:
                        raise TypeError('Transition matrix on index' + ' ' +
                                        str(idx) + 'must be ' +
                                        'a square matrix.')
                    if T.shape[0] != g.nv():
                        raise TypeError('Propagation matrix must ' +
                                        'have the same dimension ' +
                                        'as the number of vertices.')
                else:
                    T = g.get_adjacency_matrix()

                nv = g.nv()
                transition_matrix[n] = (T.T / np.sum(T, axis=1)).T
                attr = g.get_labels(purpose="adjacency")
                try:
                    attributes = np.array([attr[j] for j in range(nv)])
                except TypeError:
                    raise TypeError(
                        'All attributes of a single graph should have the same dimension.'
                    )

                Attr.append(attributes)
                indexes.append(indexes[-1] + nv)
                n += 1
            try:
                P = np.vstack(Attr)
            except ValueError:
                raise ValueError(
                    'Attribute dimensions should be the same, for all graphs')

            if self._method_calling == 1:
                self._dim = P.shape[1]
            else:
                if self._dim != P.shape[1]:
                    raise ValueError('transform attribute vectors should'
                                     'have the same dimension as in fit')

            if n == 0:
                raise ValueError('Parsed input is empty')

            # feature vectors
            if self._method_calling == 1:
                # simple normal
                self._u, self._b, self._hd = list(), list(), list()
                for t in range(self.t_max):
                    u = self.random_state_.randn(self._dim)
                    if self.take_cauchy_:
                        # cauchy
                        u = np.divide(u, self.random_state_.randn(self._dim))

                    self._u.append(u)
                    # random offset
                    self._b.append(self.w *
                                   self.random_state_.randn(self._dim))

                phi = {k: dict() for k in range(n)}
                for t in range(self.t_max):
                    # for hash all graphs inside P and produce the feature vectors
                    hashes = self.calculate_LSH(P, self._u[t],
                                                self._b[t]).tolist()

                    hd = {
                        j: i
                        for i, j in enumerate({tuple(l)
                                               for l in hashes})
                    }
                    self._hd.append(hd)

                    features = np.array([hd[tuple(l)] for l in hashes])

                    # Accumulate the results.
                    for k in range(n):
                        phi[k][t] = Counter(
                            features[indexes[k]:indexes[k + 1]].flat)

                    # calculate the Propagation matrix if needed
                    if t < self.t_max - 1:
                        for k in range(n):
                            start, end = indexes[k:k + 2]
                            P[start:end, :] = np.dot(transition_matrix[k],
                                                     P[start:end, :])

                return [phi[k] for k in range(n)]

            if self._method_calling == 3:
                phi = {k: dict() for k in range(n)}
                for t in range(self.t_max):
                    # for hash all graphs inside P and produce the feature vectors
                    hashes = self.calculate_LSH(P, self._u[t],
                                                self._b[t]).tolist()

                    hd = dict(
                        chain(
                            iteritems(self._hd[t]),
                            iter((j, i)
                                 for i, j in enumerate(
                                     filterfalse(lambda x: x in self._hd[t],
                                                 {tuple(l)
                                                  for l in hashes}),
                                     len(self._hd[t])))))

                    features = np.array([hd[tuple(l)] for l in hashes])

                    # Accumulate the results.
                    for k in range(n):
                        phi[k][t] = Counter(features[indexes[k]:indexes[k +
                                                                        1]])

                    # calculate the Propagation matrix if needed
                    if t < self.t_max - 1:
                        for k in range(n):
                            start, end = indexes[k:k + 2]
                            P[start:end, :] = np.dot(transition_matrix[k],
                                                     P[start:end, :])

                return [phi[k] for k in range(n)]
Ejemplo n.º 3
0
    def parse_input(self, X):
        """Parse and check the given input for the Graph Hopper kernel.

        Parameters
        ----------
        X : iterable
            For the input to pass the test, we must have:
            Each element must be an iterable with at most three features and at
            least one. The first that is obligatory is a valid graph structure
            (adjacency matrix or edge_dictionary) while the second is
            node_labels and the third edge_labels (that fitting the given graph
            format).

        Returns
        -------
        out : np.array, shape=(len(X), n_labels)
            A np array for frequency (cols) histograms for all Graphs (rows).

        """
        if not isinstance(X, Iterable):
            raise TypeError('input must be an iterable\n')
        else:
            ni = 0
            diam = list()
            graphs = list()
            for (i, x) in enumerate(iter(X)):
                is_iter = False
                if isinstance(x, Iterable):
                    is_iter = True
                    x = list(x)

                if type(x) is Graph:
                    g = Graph(x.get_adjacency_matrix(),
                              x.get_labels(purpose="adjacency"), {},
                              self._graph_format)
                elif is_iter and len(x) == 0 or len(x) >= 2:
                    if len(x) == 0:
                        warn('Ignoring empty element on index: ' + str(i))
                        continue
                    elif len(x) >= 2:
                        g = Graph(x[0], x[1], {}, "adjacency")
                        g.change_format(self._graph_format)
                else:
                    raise TypeError('each element of X must be either a '
                                    'graph object or a list with at least '
                                    'a graph like object and node, ')

                spm, attr = g.build_shortest_path_matrix(labels="vertex")
                nv = g.nv()
                try:
                    attributes = np.array([attr[j] for j in range(nv)])
                except TypeError:
                    raise TypeError(
                        'All attributes of a single graph should have the same dimension.'
                    )
                diam.append(int(np.max(spm[spm < float("Inf")])))
                graphs.append((g.get_adjacency_matrix(), nv, attributes))
                ni += 1

        if self._method_calling == 1:
            max_diam = self._max_diam = max(diam) + 1
        else:
            max_diam = max(self._max_diam, max(diam) + 1)

        out = list()
        for i in range(ni):
            AM, node_nr, attributes = graphs[i]
            des = np.zeros(shape=(node_nr, node_nr, max_diam), dtype=int)
            occ = np.zeros(shape=(node_nr, node_nr, max_diam), dtype=int)

            # Convert adjacency matrix to dictionary
            idx_i, idx_j = np.where(AM > 0)
            ed = defaultdict(dict)
            for (a, b) in filterfalse(lambda a: a[0] == a[1],
                                      zip(idx_i, idx_j)):
                ed[a][b] = AM[a, b]

            for j in range(node_nr):
                A = np.zeros(shape=AM.shape)

                # Single-source shortest path from node j
                D, p = dijkstra(ed, j)

                D = np.array(
                    list(D.get(k, float("Inf")) for k in range(node_nr)))
                p[j] = -1

                # Restrict to the connected component of node j
                conn_comp = np.where(D < float("Inf"))[0]

                # To-be DAG adjacency matrix of connected component of node j
                A_cc = A[conn_comp, :][:, conn_comp]

                # Adjacency matrix of connected component of node j
                AM_cc = AM[conn_comp, :][:, conn_comp]
                D_cc = D[conn_comp]
                conn_comp_converter = np.zeros(shape=(A.shape[0], 1),
                                               dtype=int)
                for k in range(conn_comp.shape[0]):
                    conn_comp_converter[conn_comp[k]] = k
                conn_comp_converter = np.vstack([0, conn_comp_converter])
                p_cc = conn_comp_converter[
                    np.array(list(p[k] for k in conn_comp)) + 1]

                # Number of nodes in connected component of node j
                conncomp_node_nr = A_cc.shape[0]
                for v in range(conncomp_node_nr):
                    if p_cc[v] > 0:
                        # Generate A_cc by adding directed edges of form (parent(v), v)
                        A_cc[p_cc[v], v] = 1

                    # Distance from v to j
                    v_dist = D_cc[v]

                    # All neighbors of v in the undirected graph
                    v_nbs = np.where(AM_cc[v, :] > 0)[0]

                    # Distances of neighbors of v to j
                    v_nbs_dists = D_cc[v_nbs]

                    # All neighbors of v in undirected graph who are
                    # one step closer to j than v is; i.e. SP-DAG parents
                    v_parents = v_nbs[v_nbs_dists == (v_dist - 1)]

                    # Add SP-DAG parents to A_cc
                    A_cc[v_parents, v] = 1

                # Computes the descendants & occurence vectors o_j(v), d_j(v)
                # for all v in the connected component
                occ_p, des_p = od_vectors_dag(A_cc, D_cc)

                if des_p.shape[0] == 1 and j == 0:
                    des[j, 0, 0] = des_p
                    occ[j, 0, 0] = occ_p
                else:
                    # Convert back to the indices of the original graph
                    for v in range(des_p.shape[0]):
                        for l in range(des_p.shape[1]):
                            des[j, conn_comp[v], l] = des_p[v, l]
                    # Convert back to the indices of the original graph
                    for v in range(occ_p.shape[0]):
                        for l in range(occ_p.shape[1]):
                            occ[j, conn_comp[v], l] = occ_p[v, l]

            M = np.zeros(shape=(node_nr, max_diam, max_diam))
            # j loops through choices of root
            for j in range(node_nr):
                des_mat_j_root = np.squeeze(des[j, :, :])
                occ_mat_j_root = np.squeeze(occ[j, :, :])
                # v loops through nodes
                for v in range(node_nr):
                    for a in range(max_diam):
                        for b in range(a, max_diam):
                            # M[v,:,:] is M[v]; a = node coordinate in path, b = path length
                            M[v, a,
                              b] += des_mat_j_root[v, b -
                                                   a] * occ_mat_j_root[v, a]

            if self.calculate_norm_:
                out.append((M, attributes, np.sum(attributes**2, axis=1)))
            else:
                out.append((M, attributes))
        return out
Ejemplo n.º 4
0
    def parse_input(self, X):
        """Parse and create features for the propation kernel.

        Parameters
        ----------
        X : iterable
            For the input to pass the test, we must have:
            Each element must be an iterable with at most three features and at
            least one. The first that is obligatory is a valid graph structure
            (adjacency matrix or edge_dictionary) while the second is
            node_labels and the third edge_labels (that correspond to the given
            graph format). A valid input also consists of graph type objects.

        Returns
        -------
        local_values : dict
            A dictionary of pairs between each input graph and a bins where the
            sampled graphlets have fallen.

        """
        if not isinstance(X, collections.Iterable):
            raise ValueError('input must be an iterable\n')
        else:
            i = -1
            transition_matrix = dict()
            labels = set()
            L = list()
            for (idx, x) in enumerate(iter(X)):
                is_iter = isinstance(x, collections.Iterable)
                if is_iter:
                    x = list(x)
                if is_iter and len(x) in [0, 2, 3, 4]:
                    if len(x) == 0:
                        warnings.warn('Ignoring empty element on ' +
                                      'index: ' + str(idx))
                        continue
                    if len(x) == 2 and type(x[0]) is Graph:
                        g, T = x
                    else:
                        g = Graph(x[0], x[1], {}, self._graph_format)
                        if len(x) == 4:
                            T = x[3]
                        else:
                            T = None
                elif type(x) is Graph:
                    g, T = x, None
                else:
                    raise ValueError('Each element of X must be either a ' +
                                     'Graph or an iterable with at least 2 ' +
                                     'and at most 4 elements\n')

                if T is not None:
                    if T.shape[0] != T.shape[1]:
                        raise TypeError('Transition matrix on index' + ' ' +
                                        str(idx) + 'must be ' +
                                        'a square matrix.')
                    if T.shape[0] != g.nv():
                        raise TypeError('Propagation matrix must ' +
                                        'have the same dimension ' +
                                        'as the number of vertices.')
                else:
                    T = g.get_adjacency_matrix()

                i += 1
                transition_matrix[i] = (T.T / np.sum(T, axis=1)).T
                label = g.get_labels(purpose='adjacency')
                try:
                    labels |= set(itervalues(label))
                except TypeError:
                    raise TypeError(
                        'For a non attributed kernel, labels should be hashable.'
                    )
                L.append((g.nv(), label))

            if i == -1:
                raise ValueError('Parsed input is empty')

            # The number of parsed graphs
            n = i + 1

            # enumerate labels
            if self._method_calling == 1:
                enum_labels = {l: i for (i, l) in enumerate(list(labels))}
                self._enum_labels = enum_labels
                self._parent_labels = labels
            elif self._method_calling == 3:
                new_elements = labels - self._parent_labels
                if len(new_elements) > 0:
                    new_enum_labels = iter((l, i) for (i, l) in enumerate(
                        list(new_elements), len(self._enum_labels)))
                    enum_labels = dict(
                        chain(iteritems(self._enum_labels), new_enum_labels))
                else:
                    enum_labels = self._enum_labels

            # make a matrix for all graphs that contains label vectors
            P, data, indexes = dict(), list(), [0]
            for (k, (nv, label)) in enumerate(L):
                data += [(indexes[-1] + j, enum_labels[label[j]])
                         for j in range(nv)]
                indexes.append(indexes[-1] + nv)

            # Initialise the on hot vector
            rows, cols = zip(*data)
            P = np.zeros(shape=(indexes[-1], len(enum_labels)))
            P[rows, cols] = 1
            dim_orig = len(self._enum_labels)

            # feature vectors
            if self._method_calling == 1:
                # simple normal
                self._u, self._b, self._hd = list(), list(), list()
                for t in range(self.t_max):
                    u = self.random_state_.randn(len(enum_labels))

                    if self.take_cauchy_:
                        # cauchy
                        u = np.divide(
                            u, self.random_state_.randn(len(enum_labels)))

                    self._u.append(u)
                    # random offset
                    self._b.append(self.w * self.random_state_.rand())

                phi = {k: dict() for k in range(n)}
                for t in range(self.t_max):
                    # for hash all graphs inside P and produce the feature vectors
                    hashes = self.calculate_LSH(P, self._u[t], self._b[t])
                    hd = dict(
                        (j, i) for i, j in enumerate(set(np.unique(hashes))))
                    self._hd.append(hd)
                    features = np.vectorize(lambda i: hd[i])(hashes)

                    # Accumulate the results.
                    for k in range(n):
                        phi[k][t] = Counter(features[indexes[k]:indexes[k +
                                                                        1]])

                    # calculate the Propagation matrix if needed
                    if t < self.t_max - 1:
                        for k in range(n):
                            start, end = indexes[k:k + 2]
                            P[start:end, :] = np.dot(transition_matrix[k],
                                                     P[start:end, :])

                return [phi[k] for k in range(n)]

            elif (self._method_calling == 3 and dim_orig >= len(enum_labels)):
                phi = {k: dict() for k in range(n)}
                for t in range(self.t_max):
                    # for hash all graphs inside P and produce the feature vectors
                    hashes = self.calculate_LSH(P, self._u[t], self._b[t])
                    hd = dict(
                        chain(
                            iteritems(self._hd[t]),
                            iter((j, i)
                                 for i, j in enumerate(
                                     filterfalse(lambda x: x in self._hd[t],
                                                 np.unique(hashes)),
                                     len(self._hd[t])))))

                    features = np.vectorize(lambda i: hd[i])(hashes)

                    # Accumulate the results.
                    for k in range(n):
                        phi[k][t] = Counter(features[indexes[k]:indexes[k +
                                                                        1]])

                    # calculate the Propagation matrix if needed
                    if t < self.t_max - 1:
                        for k in range(n):
                            start, end = indexes[k:k + 2]
                            P[start:end, :] = np.dot(transition_matrix[k],
                                                     P[start:end, :])

                return [phi[k] for k in range(n)]

            else:
                cols = np.array(cols)
                vertices = np.where(cols < dim_orig)[0]
                vertices_p = np.where(cols >= dim_orig)[0]
                nnv = len(enum_labels) - dim_orig
                phi = {k: dict() for k in range(n)}
                for t in range(self.t_max):
                    # hash all graphs inside P and produce the feature vectors
                    hashes = self.calculate_LSH(P[vertices, :dim_orig],
                                                self._u[t], self._b[t])

                    hd = dict(
                        chain(
                            iteritems(self._hd[t]),
                            iter((j, i)
                                 for i, j in enumerate(
                                     filterfalse(lambda x: x in self._hd[t],
                                                 np.unique(hashes)),
                                     len(self._hd[t])))))

                    features = np.vectorize(lambda i: hd[i],
                                            otypes=[int])(hashes)

                    # for each the new labels graph hash P and produce the feature vectors
                    u = self.random_state_.randn(nnv)
                    if self.take_cauchy_:
                        # cauchy
                        u = np.divide(u, self.random_state_.randn(nnv))

                    u = np.hstack((self._u[t], u))

                    # calculate hashes for the remaining
                    hashes = self.calculate_LSH(P[vertices_p, :], u,
                                                self._b[t])
                    hd = dict(
                        chain(
                            iteritems(hd),
                            iter((j, i)
                                 for i, j in enumerate(hashes, len(hd)))))

                    features_p = np.vectorize(lambda i: hd[i],
                                              otypes=[int])(hashes)

                    # Accumulate the results
                    for k in range(n):
                        A = Counter(features[np.logical_and(
                            indexes[k] <= vertices,
                            vertices <= indexes[k + 1])])
                        B = Counter(features_p[np.logical_and(
                            indexes[k] <= vertices_p,
                            vertices_p <= indexes[k + 1])])
                        phi[k][t] = A + B

                    # calculate the Propagation matrix if needed
                    if t < self.t_max - 1:
                        for k in range(n):
                            start, end = indexes[k:k + 2]
                            P[start:end, :] = np.dot(transition_matrix[k],
                                                     P[start:end, :])

                        Q = np.all(P[:, dim_orig:] > 0, axis=1)
                        vertices = np.where(~Q)[0]
                        vertices_p = np.where(Q)[0]

                return [phi[k] for k in range(n)]