def parse_input(self, X): """Parse and create features for the `subgraph_matching` kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that correspond to the given graph format). A valid input also consists of graph type objects. Returns ------- out : list The extracted adjacency matrices for any given input. """ if not isinstance(X, collections.Iterable): raise TypeError('input must be an iterable\n') else: i = 0 out = list() for (idx, x) in enumerate(iter(X)): is_iter = False if isinstance(x, collections.Iterable): is_iter = True x = list(x) if type(x) is Graph: g = Graph( x.get_adjacency_matrix(), x.get_labels(purpose="adjacency"), x.get_labels(purpose="adjacency", label_type="edge"), self._graph_format) elif is_iter and len(x) in [0, 3]: x = list(x) if len(x) == 0: warnings.warn('Ignoring empty element' + ' on index: ' + str(idx)) continue elif len(x) == 3: g = Graph(x[0], x[1], x[2], "adjacency") g.change_format(self._graph_format) else: raise TypeError('each element of X must be either a ' + 'graph object or a list with at least ' + 'a graph like object and node, ' + 'edge labels dict \n') n = g.nv() E = g.get_edge_dictionary() L = g.get_labels(purpose="dictionary", return_none=(self.kv is None)) Le = g.get_labels(purpose="dictionary", label_type="edge", return_none=(self.ke is None)) Er = set( (a, b) for a in E.keys() for b in E[a].keys() if a != b) i += 1 out.append((n, Er, L, Le)) if i == 0: raise ValueError('parsed input is empty') return out
def parse_input(self, X): """Parse and create features for the attributed propation kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that correspond to the given graph format). A valid input also consists of graph type objects. Returns ------- local_values : dict A dictionary of pairs between each input graph and a bins where the sampled graphlets have fallen. """ if not isinstance(X, collections.Iterable): raise ValueError('input must be an iterable\n') else: # The number of parsed graphs n = 0 transition_matrix = dict() indexes = [0] Attr = list() for (idx, x) in enumerate(iter(X)): is_iter = isinstance(x, collections.Iterable) if is_iter: x = list(x) if is_iter and len(x) in [0, 2, 3, 4]: if len(x) == 0: warnings.warn('Ignoring empty element on ' + 'index: ' + str(idx)) continue if len(x) == 2 and type(x[0]) is Graph: g, T = x else: g = Graph(x[0], x[1], {}, self._graph_format) if len(x) == 4: T = x[3] else: T = None elif type(x) is Graph: g, T = x, None else: raise ValueError('Each element of X must be either a ' + 'Graph or an iterable with at least 2 ' + 'and at most 4 elements\n') if T is not None: if T.shape[0] != T.shape[1]: raise TypeError('Transition matrix on index' + ' ' + str(idx) + 'must be ' + 'a square matrix.') if T.shape[0] != g.nv(): raise TypeError('Propagation matrix must ' + 'have the same dimension ' + 'as the number of vertices.') else: T = g.get_adjacency_matrix() nv = g.nv() transition_matrix[n] = (T.T / np.sum(T, axis=1)).T attr = g.get_labels(purpose="adjacency") try: attributes = np.array([attr[j] for j in range(nv)]) except TypeError: raise TypeError( 'All attributes of a single graph should have the same dimension.' ) Attr.append(attributes) indexes.append(indexes[-1] + nv) n += 1 try: P = np.vstack(Attr) except ValueError: raise ValueError( 'Attribute dimensions should be the same, for all graphs') if self._method_calling == 1: self._dim = P.shape[1] else: if self._dim != P.shape[1]: raise ValueError('transform attribute vectors should' 'have the same dimension as in fit') if n == 0: raise ValueError('Parsed input is empty') # feature vectors if self._method_calling == 1: # simple normal self._u, self._b, self._hd = list(), list(), list() for t in range(self.t_max): u = self.random_state_.randn(self._dim) if self.take_cauchy_: # cauchy u = np.divide(u, self.random_state_.randn(self._dim)) self._u.append(u) # random offset self._b.append(self.w * self.random_state_.randn(self._dim)) phi = {k: dict() for k in range(n)} for t in range(self.t_max): # for hash all graphs inside P and produce the feature vectors hashes = self.calculate_LSH(P, self._u[t], self._b[t]).tolist() hd = { j: i for i, j in enumerate({tuple(l) for l in hashes}) } self._hd.append(hd) features = np.array([hd[tuple(l)] for l in hashes]) # Accumulate the results. for k in range(n): phi[k][t] = Counter( features[indexes[k]:indexes[k + 1]].flat) # calculate the Propagation matrix if needed if t < self.t_max - 1: for k in range(n): start, end = indexes[k:k + 2] P[start:end, :] = np.dot(transition_matrix[k], P[start:end, :]) return [phi[k] for k in range(n)] if self._method_calling == 3: phi = {k: dict() for k in range(n)} for t in range(self.t_max): # for hash all graphs inside P and produce the feature vectors hashes = self.calculate_LSH(P, self._u[t], self._b[t]).tolist() hd = dict( chain( iteritems(self._hd[t]), iter((j, i) for i, j in enumerate( filterfalse(lambda x: x in self._hd[t], {tuple(l) for l in hashes}), len(self._hd[t]))))) features = np.array([hd[tuple(l)] for l in hashes]) # Accumulate the results. for k in range(n): phi[k][t] = Counter(features[indexes[k]:indexes[k + 1]]) # calculate the Propagation matrix if needed if t < self.t_max - 1: for k in range(n): start, end = indexes[k:k + 2] P[start:end, :] = np.dot(transition_matrix[k], P[start:end, :]) return [phi[k] for k in range(n)]
def parse_input(self, X): """Parse and check the given input for the Graph Hopper kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that fitting the given graph format). Returns ------- out : np.array, shape=(len(X), n_labels) A np array for frequency (cols) histograms for all Graphs (rows). """ if not isinstance(X, Iterable): raise TypeError('input must be an iterable\n') else: ni = 0 diam = list() graphs = list() for (i, x) in enumerate(iter(X)): is_iter = False if isinstance(x, Iterable): is_iter = True x = list(x) if type(x) is Graph: g = Graph(x.get_adjacency_matrix(), x.get_labels(purpose="adjacency"), {}, self._graph_format) elif is_iter and len(x) == 0 or len(x) >= 2: if len(x) == 0: warn('Ignoring empty element on index: ' + str(i)) continue elif len(x) >= 2: g = Graph(x[0], x[1], {}, "adjacency") g.change_format(self._graph_format) else: raise TypeError('each element of X must be either a ' 'graph object or a list with at least ' 'a graph like object and node, ') spm, attr = g.build_shortest_path_matrix(labels="vertex") nv = g.nv() try: attributes = np.array([attr[j] for j in range(nv)]) except TypeError: raise TypeError( 'All attributes of a single graph should have the same dimension.' ) diam.append(int(np.max(spm[spm < float("Inf")]))) graphs.append((g.get_adjacency_matrix(), nv, attributes)) ni += 1 if self._method_calling == 1: max_diam = self._max_diam = max(diam) + 1 else: max_diam = max(self._max_diam, max(diam) + 1) out = list() for i in range(ni): AM, node_nr, attributes = graphs[i] des = np.zeros(shape=(node_nr, node_nr, max_diam), dtype=int) occ = np.zeros(shape=(node_nr, node_nr, max_diam), dtype=int) # Convert adjacency matrix to dictionary idx_i, idx_j = np.where(AM > 0) ed = defaultdict(dict) for (a, b) in filterfalse(lambda a: a[0] == a[1], zip(idx_i, idx_j)): ed[a][b] = AM[a, b] for j in range(node_nr): A = np.zeros(shape=AM.shape) # Single-source shortest path from node j D, p = dijkstra(ed, j) D = np.array( list(D.get(k, float("Inf")) for k in range(node_nr))) p[j] = -1 # Restrict to the connected component of node j conn_comp = np.where(D < float("Inf"))[0] # To-be DAG adjacency matrix of connected component of node j A_cc = A[conn_comp, :][:, conn_comp] # Adjacency matrix of connected component of node j AM_cc = AM[conn_comp, :][:, conn_comp] D_cc = D[conn_comp] conn_comp_converter = np.zeros(shape=(A.shape[0], 1), dtype=int) for k in range(conn_comp.shape[0]): conn_comp_converter[conn_comp[k]] = k conn_comp_converter = np.vstack([0, conn_comp_converter]) p_cc = conn_comp_converter[ np.array(list(p[k] for k in conn_comp)) + 1] # Number of nodes in connected component of node j conncomp_node_nr = A_cc.shape[0] for v in range(conncomp_node_nr): if p_cc[v] > 0: # Generate A_cc by adding directed edges of form (parent(v), v) A_cc[p_cc[v], v] = 1 # Distance from v to j v_dist = D_cc[v] # All neighbors of v in the undirected graph v_nbs = np.where(AM_cc[v, :] > 0)[0] # Distances of neighbors of v to j v_nbs_dists = D_cc[v_nbs] # All neighbors of v in undirected graph who are # one step closer to j than v is; i.e. SP-DAG parents v_parents = v_nbs[v_nbs_dists == (v_dist - 1)] # Add SP-DAG parents to A_cc A_cc[v_parents, v] = 1 # Computes the descendants & occurence vectors o_j(v), d_j(v) # for all v in the connected component occ_p, des_p = od_vectors_dag(A_cc, D_cc) if des_p.shape[0] == 1 and j == 0: des[j, 0, 0] = des_p occ[j, 0, 0] = occ_p else: # Convert back to the indices of the original graph for v in range(des_p.shape[0]): for l in range(des_p.shape[1]): des[j, conn_comp[v], l] = des_p[v, l] # Convert back to the indices of the original graph for v in range(occ_p.shape[0]): for l in range(occ_p.shape[1]): occ[j, conn_comp[v], l] = occ_p[v, l] M = np.zeros(shape=(node_nr, max_diam, max_diam)) # j loops through choices of root for j in range(node_nr): des_mat_j_root = np.squeeze(des[j, :, :]) occ_mat_j_root = np.squeeze(occ[j, :, :]) # v loops through nodes for v in range(node_nr): for a in range(max_diam): for b in range(a, max_diam): # M[v,:,:] is M[v]; a = node coordinate in path, b = path length M[v, a, b] += des_mat_j_root[v, b - a] * occ_mat_j_root[v, a] if self.calculate_norm_: out.append((M, attributes, np.sum(attributes**2, axis=1))) else: out.append((M, attributes)) return out
def parse_input(self, X): """Parse and create features for the propation kernel. Parameters ---------- X : iterable For the input to pass the test, we must have: Each element must be an iterable with at most three features and at least one. The first that is obligatory is a valid graph structure (adjacency matrix or edge_dictionary) while the second is node_labels and the third edge_labels (that correspond to the given graph format). A valid input also consists of graph type objects. Returns ------- local_values : dict A dictionary of pairs between each input graph and a bins where the sampled graphlets have fallen. """ if not isinstance(X, collections.Iterable): raise ValueError('input must be an iterable\n') else: i = -1 transition_matrix = dict() labels = set() L = list() for (idx, x) in enumerate(iter(X)): is_iter = isinstance(x, collections.Iterable) if is_iter: x = list(x) if is_iter and len(x) in [0, 2, 3, 4]: if len(x) == 0: warnings.warn('Ignoring empty element on ' + 'index: ' + str(idx)) continue if len(x) == 2 and type(x[0]) is Graph: g, T = x else: g = Graph(x[0], x[1], {}, self._graph_format) if len(x) == 4: T = x[3] else: T = None elif type(x) is Graph: g, T = x, None else: raise ValueError('Each element of X must be either a ' + 'Graph or an iterable with at least 2 ' + 'and at most 4 elements\n') if T is not None: if T.shape[0] != T.shape[1]: raise TypeError('Transition matrix on index' + ' ' + str(idx) + 'must be ' + 'a square matrix.') if T.shape[0] != g.nv(): raise TypeError('Propagation matrix must ' + 'have the same dimension ' + 'as the number of vertices.') else: T = g.get_adjacency_matrix() i += 1 transition_matrix[i] = (T.T / np.sum(T, axis=1)).T label = g.get_labels(purpose='adjacency') try: labels |= set(itervalues(label)) except TypeError: raise TypeError( 'For a non attributed kernel, labels should be hashable.' ) L.append((g.nv(), label)) if i == -1: raise ValueError('Parsed input is empty') # The number of parsed graphs n = i + 1 # enumerate labels if self._method_calling == 1: enum_labels = {l: i for (i, l) in enumerate(list(labels))} self._enum_labels = enum_labels self._parent_labels = labels elif self._method_calling == 3: new_elements = labels - self._parent_labels if len(new_elements) > 0: new_enum_labels = iter((l, i) for (i, l) in enumerate( list(new_elements), len(self._enum_labels))) enum_labels = dict( chain(iteritems(self._enum_labels), new_enum_labels)) else: enum_labels = self._enum_labels # make a matrix for all graphs that contains label vectors P, data, indexes = dict(), list(), [0] for (k, (nv, label)) in enumerate(L): data += [(indexes[-1] + j, enum_labels[label[j]]) for j in range(nv)] indexes.append(indexes[-1] + nv) # Initialise the on hot vector rows, cols = zip(*data) P = np.zeros(shape=(indexes[-1], len(enum_labels))) P[rows, cols] = 1 dim_orig = len(self._enum_labels) # feature vectors if self._method_calling == 1: # simple normal self._u, self._b, self._hd = list(), list(), list() for t in range(self.t_max): u = self.random_state_.randn(len(enum_labels)) if self.take_cauchy_: # cauchy u = np.divide( u, self.random_state_.randn(len(enum_labels))) self._u.append(u) # random offset self._b.append(self.w * self.random_state_.rand()) phi = {k: dict() for k in range(n)} for t in range(self.t_max): # for hash all graphs inside P and produce the feature vectors hashes = self.calculate_LSH(P, self._u[t], self._b[t]) hd = dict( (j, i) for i, j in enumerate(set(np.unique(hashes)))) self._hd.append(hd) features = np.vectorize(lambda i: hd[i])(hashes) # Accumulate the results. for k in range(n): phi[k][t] = Counter(features[indexes[k]:indexes[k + 1]]) # calculate the Propagation matrix if needed if t < self.t_max - 1: for k in range(n): start, end = indexes[k:k + 2] P[start:end, :] = np.dot(transition_matrix[k], P[start:end, :]) return [phi[k] for k in range(n)] elif (self._method_calling == 3 and dim_orig >= len(enum_labels)): phi = {k: dict() for k in range(n)} for t in range(self.t_max): # for hash all graphs inside P and produce the feature vectors hashes = self.calculate_LSH(P, self._u[t], self._b[t]) hd = dict( chain( iteritems(self._hd[t]), iter((j, i) for i, j in enumerate( filterfalse(lambda x: x in self._hd[t], np.unique(hashes)), len(self._hd[t]))))) features = np.vectorize(lambda i: hd[i])(hashes) # Accumulate the results. for k in range(n): phi[k][t] = Counter(features[indexes[k]:indexes[k + 1]]) # calculate the Propagation matrix if needed if t < self.t_max - 1: for k in range(n): start, end = indexes[k:k + 2] P[start:end, :] = np.dot(transition_matrix[k], P[start:end, :]) return [phi[k] for k in range(n)] else: cols = np.array(cols) vertices = np.where(cols < dim_orig)[0] vertices_p = np.where(cols >= dim_orig)[0] nnv = len(enum_labels) - dim_orig phi = {k: dict() for k in range(n)} for t in range(self.t_max): # hash all graphs inside P and produce the feature vectors hashes = self.calculate_LSH(P[vertices, :dim_orig], self._u[t], self._b[t]) hd = dict( chain( iteritems(self._hd[t]), iter((j, i) for i, j in enumerate( filterfalse(lambda x: x in self._hd[t], np.unique(hashes)), len(self._hd[t]))))) features = np.vectorize(lambda i: hd[i], otypes=[int])(hashes) # for each the new labels graph hash P and produce the feature vectors u = self.random_state_.randn(nnv) if self.take_cauchy_: # cauchy u = np.divide(u, self.random_state_.randn(nnv)) u = np.hstack((self._u[t], u)) # calculate hashes for the remaining hashes = self.calculate_LSH(P[vertices_p, :], u, self._b[t]) hd = dict( chain( iteritems(hd), iter((j, i) for i, j in enumerate(hashes, len(hd))))) features_p = np.vectorize(lambda i: hd[i], otypes=[int])(hashes) # Accumulate the results for k in range(n): A = Counter(features[np.logical_and( indexes[k] <= vertices, vertices <= indexes[k + 1])]) B = Counter(features_p[np.logical_and( indexes[k] <= vertices_p, vertices_p <= indexes[k + 1])]) phi[k][t] = A + B # calculate the Propagation matrix if needed if t < self.t_max - 1: for k in range(n): start, end = indexes[k:k + 2] P[start:end, :] = np.dot(transition_matrix[k], P[start:end, :]) Q = np.all(P[:, dim_orig:] > 0, axis=1) vertices = np.where(~Q)[0] vertices_p = np.where(Q)[0] return [phi[k] for k in range(n)]