Ejemplo n.º 1
0
def make_prlc_rand():
    md_RLC_rand = (
        gr.Model("RLC with component tolerances") >> gr.cp_vec_function(
            fun=lambda df: gr.df_make(
                Rr=df.R * (1 + df.dR),
                Lr=df.L * (1 + df.dL),
                Cr=df.C * (1 + df.dC),
            ),
            var=["R", "dR", "L", "dL", "C", "dC"],
            out=["Rr", "Lr", "Cr"],
        ) >> gr.cp_vec_function(
            fun=lambda df: gr.df_make(omega0=np.sqrt(1 / df.Lr / df.Cr)),
            var=["Lr", "Cr"],
            out=["omega0"],
        ) >> gr.cp_vec_function(
            fun=lambda df: gr.df_make(Q=df.omega0 * df.Rr * df.Cr),
            name="parallel RLC",
            var=["omega0", "Rr", "Cr"],
            out=["Q"]) >> gr.cp_bounds(
                R=(1e-3, 1e0),
                L=(1e-9, 1e-3),
                C=(1e-3, 100),
            ) >> gr.cp_marginals(
                dR=dict(dist="uniform",
                        loc=R_percent_lo,
                        scale=R_percent_up - R_percent_lo),
                dL=dict(dist="uniform",
                        loc=L_percent_lo,
                        scale=L_percent_up - L_percent_lo),
                dC=dict(dist="uniform",
                        loc=C_percent_lo,
                        scale=C_percent_up - C_percent_lo),
            ) >> gr.cp_copula_independence())

    return md_RLC_rand
Ejemplo n.º 2
0
def make_tlmc_model_2f1m():

    import numpy as np
    import grama as gr

    def fun_lev0(x):  # evaluate level 0 function at x, record cost
        P = x
        cost = 1
        return P, cost

    def fun_lev1(x):  # evaluate level 1 function at x, record cost
        P = np.sin(x)
        cost = 2
        return P, cost

    md = gr.Model(name = "tlmc_model") >> \
    gr.cp_function(
        fun = fun_lev0,
        var = ["x"],
        out = ["P0" , "cost0"],
        name = ["level 0 function"] ) >> \
    gr.cp_function(
        fun = fun_lev1,
        var = ["x"],
        out = ["P1" , "cost1"],
        name = ["level 1 function"] ) >> \
    gr.cp_marginals(
        x = {"dist": "norm", "loc": 0, "scale": 1, "sign": +1}) >> \
    gr.cp_copula_independence

    return md
Ejemplo n.º 3
0
def make_test():
    md = Model() >> \
         cp_function(fun=fun, var=3, out=1) >> \
         cp_bounds(x0=(-1,+1), x1=(-1,+1), x2=(-1,+1)) >> \
         cp_marginals(
             x0={"dist": "uniform", "loc": -1, "scale": 2},
             x1={"dist": "uniform", "loc": -1, "scale": 2}
         ) >> \
         cp_copula_independence()

    return md
Ejemplo n.º 4
0
def make_plate_buckle():
    r"""Initialize a buckling plate model

    Variables (deterministic):
        w (in): Plate width
        h (in): Plate height
        t (in): Plate thickness
        m (-): Wavenumber
        L (kips): Applied (compressive) load;
            uniformly applied along top and bottom edges

    Variables (random):
        E (kips/in^2): Elasticity
        mu (-): Poisson's ratio

    Outputs:
        k_cr (-): Prefactor for buckling stress
        g_buckle (kips/in^2): Buckling limit state:
            critical stress - applied stress
    """
    md = (
        Model("Plate Buckling")
        >> cp_vec_function(
            fun=lambda df: df_make(
                k_cr=(df.m*df.h/df.w + df.w/df.m/df.h)**2
            ),
            var=["w", "h", "m"],
            out=["k_cr"],
        )
        >> cp_vec_function(
            fun=lambda df: df_make(
                g_buckle=df.k_cr * pi**2/12 * df.E / (1 - df.mu**2) * (df.t/df.h)**2
                - df.L / df.t / df.w
            ),
            var=["k_cr", "t", "h", "w", "E", "mu", "L"],
            out=["g_buckle"],
            name="limit state",
        )
        >> cp_bounds(
            t=(0.5 * THICKNESS, 2 * THICKNESS),
            h=(6, 18),
            w=(6, 18),
            m=(1, 5),
            L=(LOAD / 2, LOAD * 2),
        )
        >> cp_marginals(
            E=marg_fit("norm", df_stang.E),
            mu=marg_fit("beta", df_stang.mu),
        )
        >> cp_copula_gaussian(df_data=df_stang)
    )

    return md
Ejemplo n.º 5
0
def make_poly():
    md = gr.Model("Polynomials") >> \
         gr.cp_function(fun=lambda x: x, var=1, out=1, name="linear") >> \
         gr.cp_function(fun=lambda x: x**2, var=1, out=1, name="quadratic") >> \
         gr.cp_function(fun=lambda x: x**3, var=1, out=1, name="cubic") >> \
         gr.cp_marginals(
             x0={"dist": "uniform", "loc": -1, "scale": 2},
             x1={"dist": "uniform", "loc": -1, "scale": 2},
             x2={"dist": "uniform", "loc": -1, "scale": 2}
         ) >> \
         gr.cp_copula_independence()

    return md
Ejemplo n.º 6
0
def make_ishigami():
    """Ishigami function

    The Ishigami function is commonly used as a test case for estimating Sobol'
    indices.

    Model definition:

        y0 = sin(x1) + a sin(x2)^2 + b x3^4 sin(x1)

        x1 ~ U[-pi, +pi]

        x2 ~ U[-pi, +pi]

        x3 ~ U[-pi, +pi]

    Sobol' index data:

        V[y0] = a^2/8 + b pi^4/5 + b^2 pi^8/18 + 0.5

        T1 = 0.5(1 + b pi^4/5)^2

        T2 = a^2/8

        T3 = 0

        Tt1 = 0.5(1 + b pi^4/5)^2 + 8 b^2 pi^8/225

        Tt2 = a^2/8

        Tt3 = 8 b^2 pi^8/225

    References:
        T. Ishigami and T. Homma, “An importance quantification technique in uncertainty analysis for computer models,” In the First International Symposium on Uncertainty Modeling and Analysis, Maryland, USA, Dec. 3–5, 1990. DOI:10.1109/SUMA.1990.151285
    """

    md = gr.Model(name = "Ishigami Function") >> \
        gr.cp_function(
            fun=fun,
            var=["a", "b", "x1", "x2", "x3"],
            out=1
        ) >> \
        gr.cp_bounds(a=(6.0, 8.0), b=(0, 0.2)) >> \
        gr.cp_marginals(
            x1={"dist": "uniform", "loc": -np.pi, "scale": 2 * np.pi},
            x2={"dist": "uniform", "loc": -np.pi, "scale": 2 * np.pi},
            x3={"dist": "uniform", "loc": -np.pi, "scale": 2 * np.pi}
        ) >> \
        gr.cp_copula_independence()

    return md
Ejemplo n.º 7
0
def make_channel_nondim():
    r"""Make 1d channel model; dimensionless form

    Instantiates a model for particle and fluid temperature rise; particles are suspended in a fluid with bulk velocity along a square cross-section channel. The walls of said channel are transparent, and radiation heats the particles as they travel down the channel.

    References:
        Banko, A.J. "RADIATION ABSORPTION BY INERTIAL PARTICLES IN A TURBULENT SQUARE DUCT FLOW" (2018) PhD Thesis, Stanford University, Chapter 2

    """
    md = (
        Model("1d Particle-laden Channel with Radiation; Dimensionless Form")
        >> cp_vec_function(
            fun=lambda df: df_make(beta=120 * (1 + df.Phi_M * df.chi)),
            var=["Phi_M", "chi"],
            out=["beta"],
        ) >> cp_vec_function(
            fun=lambda df: df_make(
                T_f=(df.Phi_M * df.chi) / (1 + df.Phi_M * df.chi) *
                (df.I * df.xst - df.beta**(-1) * df.I *
                 (1 - exp(-df.beta * df.xst))),
                T_p=1 / (1 + df.Phi_M * df.chi) *
                (df.Phi_M * df.chi * df.I * df.xst + df.beta**(-1) * df.I *
                 (1 - exp(-df.beta * df.xst))),
            ),
            var=["xst", "Phi_M", "chi", "I", "beta"],
            out=["T_f", "T_p"],
        ) >> cp_bounds(
            ## Dimensionless axial location (-)
            xst=(0, 5), ) >> cp_marginals(
                ## Mass loading ratio (-)
                Phi_M={
                    "dist": "uniform",
                    "loc": 0,
                    "scale": 1
                },
                ## Particle-fluid heat capacity ratio (-)
                chi={
                    "dist": "uniform",
                    "loc": 0.1,
                    "scale": 0.9
                },
                ## Normalized radiative intensity (-)
                I={
                    "dist": "uniform",
                    "loc": 0.1,
                    "scale": 0.9
                },
            ) >> cp_copula_independence())

    return md
Ejemplo n.º 8
0
def make_linear_normal():
    md = Model("Linear-Normal Reliability Problem") >> \
         cp_function(
             fun=limit_state,
             var=2,
             out=["g_linear"],
             name="limit state"
         ) >> \
         cp_marginals(
             x0={"dist": "norm", "loc": 0, "scale": 1, "sign":+1},
             x1={"dist": "norm", "loc": 0, "scale": 1, "sign":+1}
         ) >> \
         cp_copula_independence()

    return md
Ejemplo n.º 9
0
def make_pareto_random(twoDim=True):
    """ Create a model of random points for a pareto frontier evaluation
    Args:
        twoDim (bool): determines whether to create a 2D or 3D model
    """
    if twoDim == True:
        # Model to make dataset
        md_true = (Model() >> cp_vec_function(
            fun=lambda df: df_make(
                y1=df.x1 * cos(df.x2),
                y2=df.x1 * sin(df.x2),
            ),
            var=["x1", "x2"],
            out=["y1", "y2"],
        ) >> cp_marginals(
            x1=dict(dist="uniform", loc=0, scale=1),
            x2=dict(dist="uniform", loc=0, scale=pi / 2),
        ) >> cp_copula_independence())

        return md_true
    else:
        # Model to make dataset
        md_true = (Model() >> cp_vec_function(
            fun=lambda df: df_make(
                y1=df.x1 * cos(df.x2),
                y2=df.x1 * sin(df.x2),
                y3=df.x1 * tan(df.x2),
            ),
            var=["x1", "x2", "x3"],
            out=["y1", "y2", "y3"],
        ) >> cp_marginals(x1=dict(dist="uniform", loc=0, scale=1),
                          x2=dict(dist="uniform", loc=0, scale=pi / 2),
                          x3=dict(dist="uniform", loc=0, scale=pi / 4)) >>
                   cp_copula_independence())

        return md_true
Ejemplo n.º 10
0
def make_plate_buckle():
    md = (gr.Model("Plate Buckling") >> gr.cp_function(
        fun=function_buckle_state,
        var=["t", "h", "w", "E", "mu", "L"],
        out=["g_buckle"],
        name="limit state",
    ) >> gr.cp_bounds(
        t=(0.5 * THICKNESS, 2 * THICKNESS),
        h=(6, 18),
        w=(6, 18),
        L=(LOAD / 2, LOAD * 2),
    ) >> gr.cp_marginals(E=gr.marg_named(df_stang.E, "norm"),
                         mu=gr.marg_named(df_stang.mu, "beta")) >>
          gr.cp_copula_gaussian(df_data=df_stang))

    return md
Ejemplo n.º 11
0
def md_gen(fun_gen, num_levs):
    import grama as gr
    models = list()
    costs = list()
    for i in range(num_levs):
        md = gr.Model(name = ("md{}".format(i))) >> \
        gr.cp_function(
            fun = fun_gen(10**(i+1)),
            var = ["x"],
            out = ["P"],
            name = ["level 0 function"] ) >> \
        gr.cp_marginals(
            x = {"dist": "norm", "loc": 0.5, "scale": 0.2, "sign": +1}) >> \
        gr.cp_copula_independence

        models.append(md)
        md_cost = i + 1
        costs.append(md_cost)
    return models, costs
Ejemplo n.º 12
0
def make_tlmc_model_1f1m():

    import numpy as np
    import grama as gr

    def fun_lev(args):  # evaluate level "lev" function at x, record cost
        level, x = args

        def fun_lev0(x):  # evaluate level 0 function at x, record cost
            P = x
            cost = 1
            return P, cost

        def fun_lev1(x):  # evaluate level 1 function at x, record cost
            P = np.sin(x)
            cost = 2
            return P, cost

        if level == 0:
            fun = fun_lev0
        elif level == 1:
            fun = fun_lev1
        else:
            raise ValueError('Input level too high')
        P, cost = fun(x)

        return P, cost

    md = gr.Model(name = "tlmc_model_1f1m") >> \
    gr.cp_function(
        fun = fun_lev,
        var = ["level", "x"],
        out = ["P" , "cost"],
        name = ["level function"] ) >> \
    gr.cp_marginals(
        x = {"dist": "norm", "loc": 0, "scale": 1, "sign": +1}) >> \
    gr.cp_copula_independence

    return md
Ejemplo n.º 13
0
def fit_nls(
    df_data,
    md=None,
    out=None,
    var_fix=None,
    df_init=None,
    verbose=True,
    uq_method=None,
    **kwargs,
):
    r"""Fit a model with Nonlinear Least Squares (NLS)

    Estimate best-fit variable levels with nonlinear least squares (NLS), and
    return an executable model with those frozen best-fit levels. Optionally,
    fit a distribution on the parameters to quantify parametric uncertainty.

    Note: This is a *synonym* for eval_nls(); see the documentation for
    eval_nls() for keyword argument options available beyond those listed here.

    Args:
        df_data (DataFrame): Data for estimating best-fit variable levels.
            Variables not found in df_data optimized for fitting.
        md (gr.Model): Model to analyze. All model variables
            selected for fitting must be bounded or random. Deterministic
            variables may have semi-infinite bounds.
        var_fix (list or None): Variables to fix to nominal levels. Note that
            variables with domain width zero will automatically be fixed.
        df_init (DataFrame): Initial guesses for parameters; overrides n_restart
        n_restart (int): Number of restarts to try; the first try is at
            the nominal conditions of the model. Returned model will use
            the least-error parameter set among restarts tested.
        n_maxiter (int): Optimizer maximum iterations
        verbose (bool): Print best-fit parameters to console?
        uq_method (str OR None): If string, select method to quantify parameter
            uncertainties. If None, provide best-fit values only. Methods:
            uq_method = "linpool": assume normal errors; linearly approximate
                parameter effects; equally pool variance matrices for each output

    Returns:
        gr.Model: Model for evaluation with best-fit variables frozen to
            optimized levels.

    Examples:
        >>> import grama as gr
        >>> from grama.data import df_trajectory_windowed
        >>> from grama.models import make_trajectory_linear
        >>> X = gr.Intention()
        >>>
        >>> md_trajectory = make_trajectory_linear()
        >>> md_fitted = (
        >>>     df_trajectory_windowed
        >>>     >> gr.ft_nls(
        >>>         md=md_trajectory,
        >>>         uq_method="linpool",
        >>>     )
        >>> )
    """
    ## Check `out` invariants
    if out is None:
        out = md.out
        print("... fit_nls setting out = {}".format(out))

    ## Check invariants
    if md is None:
        raise ValueError("Must provide model md")

    ## Determine variables to be fixed
    if var_fix is None:
        var_fix = set()
    else:
        var_fix = set(var_fix)
    for var in md.var_det:
        wid = md.domain.get_width(var)
        if wid == 0:
            var_fix.add(var)

    ## Run eval_nls to fit model parameter values
    df_fit = eval_nls(
        md,
        df_data=df_data,
        var_fix=var_fix,
        df_init=df_init,
        append=True,
        verbose=verbose,
        **kwargs,
    )
    ## Select best-fit values
    df_best = df_fit.sort_values(by="mse",
                                 axis=0).iloc[[0]].reset_index(drop=True)
    if verbose:
        print(df_fit.sort_values(by="mse", axis=0))

    ## Determine variables that were fitted
    var_fitted = list(set(md.var).intersection(set(df_best.columns)))
    var_remain = list(set(md.var).difference(set(var_fitted)))

    if len(var_remain) == 0:
        raise ValueError("Resulting model is constant!")

    ## Assemble and return fitted model
    if md.name is None:
        name = "(Fitted Model)"
    else:
        name = md.name + " (Fitted)"

    ## Calibrate parametric uncertainty, if requested
    if uq_method == "linpool":
        ## Precompute data
        df_nom = eval_nominal(md, df_det="nom")
        df_base = tran_outer(
            df_data, concat((df_best[var_fitted], df_nom[var_fix]), axis=1))
        df_pred = eval_df(md, df=df_base)
        df_grad = eval_grad_fd(md, df_base=df_base, var=var_fitted)

        ## Pool variance matrices
        n_obs = df_data.shape[0]
        n_fitted = len(var_fitted)
        Sigma_pooled = zeros((n_fitted, n_fitted))

        for output in out:
            ## Approximate sigma_sq
            sigma_sq = npsum(
                nppow(df_data[output].values - df_pred[output].values,
                      2)) / (n_obs - n_fitted)
            ## Approximate (pseudo)-inverse hessian
            var_grad = list(map(lambda v: "D" + output + "_D" + v, var_fitted))
            Z = df_grad[var_grad].values
            Hinv = pinv(Z.T.dot(Z), hermitian=True)

            ## Add variance matrix to pooled Sigma
            Sigma_pooled = Sigma_pooled + sigma_sq * Hinv / n_fitted

        ## Check model for identifiability
        kappa_out = cond(Sigma_pooled)
        if kappa_out > 1e10:
            warn(
                "Model is locally unidentifiable as measured by the " +
                "condition number of the pooled covariance matrix; " +
                "kappa = {}".format(kappa_out),
                RuntimeWarning,
            )

        ## Convert to std deviations and correlation
        sigma_comp = npsqrt(diag(Sigma_pooled))
        corr_mat = Sigma_pooled / (atleast_2d(sigma_comp).T.dot(
            atleast_2d(sigma_comp)))
        corr_data = []
        I, J = triu_indices(n_fitted, k=1)
        for ind in range(len(I)):
            i = I[ind]
            j = J[ind]
            corr_data.append([var_fitted[i], var_fitted[j], corr_mat[i, j]])
        df_corr = DataFrame(data=corr_data, columns=["var1", "var2", "corr"])

        ## Assemble marginals
        marginals = {}
        for ind, var_ in enumerate(var_fitted):
            marginals[var_] = {
                "dist": "norm",
                "loc": df_best[var_].values[0],
                "scale": sigma_comp[ind],
            }

        ## Construct model with Gaussian copula
        if len(var_fix) > 0:
            md_res = (Model(name) >> cp_function(
                lambda x: df_nom[var_fix].values,
                var=set(var_remain).difference(var_fix),
                out=var_fix,
                name="Fix variable levels",
            ) >> cp_md_det(md=md) >> cp_marginals(**marginals) >>
                      cp_copula_gaussian(df_corr=df_corr))
        else:
            md_res = (Model(name) >> cp_md_det(md=md) >> cp_marginals(
                **marginals) >> cp_copula_gaussian(df_corr=df_corr))

    ## Return deterministic model
    elif uq_method is None:
        md_res = (Model(name) >> cp_function(
            lambda x: df_best[var_fitted].values,
            var=var_remain,
            out=var_fitted,
            name="Fix variable levels",
        ) >> cp_md_det(md=md))

    else:
        raise ValueError(
            "uq_method option {} not recognized".format(uq_method))

    return md_res
Ejemplo n.º 14
0
def make_cantilever_beam():
    """Cantilever beam

    A standard reliability test-case, often used for benchmarking reliability
    analysis and design algorithms.

    Generally used in the following optimization problem:

        min_{w,t} c_area

        s.t.      P[g_stress <= 0] <= 1.35e-3

                  P[g_disp <= 0] <= 1.35e-3

                  1 <= w, t <= 4

    Deterministic Variables:
        w: Beam width
        t: Beam thickness
    Random Variables:
        H: Horizontal applied force
        V: Vertical applied force
        E: Elastic modulus
        Y: Yield stress
    Outputs:
        c_area: Cost; beam cross-sectional area
        g_stress: Limit state; stress
        g_disp: Limit state; tip displacement

    References:
        Wu, Y.-T., Shin, Y., Sues, R., and Cesare, M., "Safety-factor based approach for probability-based design optimization," American Institute of Aeronautics and Astronautics, Seattle, Washington, April 2001.
        Sues, R., Aminpour, M., and Shin, Y., "Reliability-based Multi-Disciplinary Optimiation for Aerospace Systems," American Institute of Aeronautics and Astronautics, Seattle, Washington, April 2001.

    """

    md = Model(name = "Cantilever Beam") >> \
         cp_vec_function(
             fun=function_area,
             var=["w", "t"],
             out=["c_area"],
             name="cross-sectional area",
             runtime=1.717e-7
         ) >> \
         cp_vec_function(
             fun=function_stress,
             var=["w", "t", "H", "V", "E", "Y"],
             out=["g_stress"],
             name="limit state: stress",
             runtime=8.88e-7
         ) >> \
         cp_vec_function(
             fun=function_displacement,
             var=["w", "t", "H", "V", "E", "Y"],
             out=["g_disp"],
             name="limit state: displacement",
             runtime=3.97e-6
         ) >> \
         cp_bounds(
             w=(2, 4),
             t=(2, 4)
         ) >> \
         cp_marginals(
             H={"dist": "norm", "loc": MU_H, "scale": TAU_H, "sign": +1},
             V={"dist": "norm", "loc": MU_V, "scale": TAU_V, "sign": +1},
             E={"dist": "norm", "loc": MU_E, "scale": TAU_E, "sign":  0},
             Y={"dist": "norm", "loc": MU_Y, "scale": TAU_Y, "sign": -1}
         ) >> \
         cp_copula_independence()

    return md
Ejemplo n.º 15
0
def make_channel():
    r"""Make 1d channel model; dimensional form

    Instantiates a model for particle and fluid temperature rise; particles are suspended in a fluid with bulk velocity along a square cross-section channel. The walls of said channel are transparent, and radiation heats the particles as they travel down the channel.

    Note that this takes the same inputs as the builtin dataset `df_channel`.

    References:
        Banko, A.J. "RADIATION ABSORPTION BY INERTIAL PARTICLES IN A TURBULENT SQUARE DUCT FLOW" (2018) PhD Thesis, Stanford University, Chapter 2

    Examples:

    >>> import grama as gr
    >>> from grama.data import df_channel
    >>> from grama.models import make_channel
    >>> md_channel = make_channel()

    >>> (
    >>>     df_channel
    >>>     >> gr.tf_md(md_channel)

    >>>     >> gr.ggplot(gr.aes("T_f", "T_norm"))
    >>>     + gr.geom_abline(slope=1, intercept=0, linetype="dashed")
    >>>     + gr.geom_point()
    >>>     + gr.labs(x="1D Model", y="3D DNS")
    >>> )

    """
    md = (
        Model("1d Particle-laden Channel with Radiation; Dimensional Form") >>
        cp_vec_function(
            fun=lambda df: df_make(
                Re=df.U * df.H / df.nu_f,
                chi=df.cp_p / df.cp_f,
                Pr=df.nu_f / df.alpha_f,
                Phi_M=df.rho_p * 0.524 * df.d_p**3 * df.n / df.rho_f,
                tau_flow=df.L / df.U,
                tau_pt=(df.rho_p * df.cp_p * 0.318 * df.d_p) / df.h_p,
                tau_rad=(df.rho_p * df.cp_p * 0.667 * df.d_p * df.T_0) /
                (df.Q_abs * 0.78 * df.I_0),
            ),
            var=[
                "U",  # Fluid bulk velocity
                "H",  # Channel width
                "nu_f",  # Fluid kinematic viscosity
                "cp_p",  # Particle isobaric heat capacity
                "cp_f",  # Fluid isobaric heat capacity
                "alpha_f",  # Fluid thermal diffusivity
                "rho_p",  # Particle density
                "rho_f",  # Fluid density
                "d_p",  # Particle diameter
                "n",  # Particle number density
                "h_p",  # Particle-to-gas convection coefficient
                "T_0",  # Initial temperature
                "Q_abs",  # Particle radiation absorption coefficient
                "I_0",  # Incident radiation
            ],
            out=[
                "Re",  # Reynolds number
                "Pr",  # Prandtl number
                "chi",  # Particle-fluid heat capacity ratio
                "Phi_M",  # Mass Loading Ratio
                "tau_flow",  # Fluid residence time
                "tau_pt",  # Particle thermal time constant
                "tau_rad",  # Particle temperature doubling time (approximate)
            ],
            name="Dimensionless Numbers",
        ) >> cp_vec_function(
            fun=lambda df: df_make(
                ## Let xi = x / L
                xst=(df.xi * df.L) / df.H / df.Re / df.Pr,
                ## Assume an optically-thin scenario; I/I_0 = 1
                Is=df.Re * df.Pr * (df.H / df.L) *
                (df.tau_flow / df.tau_rad) * 1,
                beta=df.Re * df.Pr * (df.H / df.L) *
                (df.tau_flow / df.tau_pt) * (1 + df.Phi_M * df.chi),
            ),
            var=[
                "xi", "chi", "H", "L", "Phi_M", "tau_flow", "tau_rad", "tau_pt"
            ],
            out=[
                "xst",  # Flow-normalized channel axial location
                "Is",  # Normalized heat flux
                "beta",  # Spatial development coefficient
            ],
            name="Intermediate Dimensionless Numbers",
        ) >> cp_vec_function(
            fun=lambda df: df_make(
                T_f=(df.Phi_M * df.chi) / (1 + df.Phi_M * df.chi) *
                (df.Is * df.xst - df.Is / df.beta *
                 (1 - exp(-df.beta * df.xst))),
                T_p=1 / (1 + df.Phi_M * df.chi) *
                (df.Phi_M * df.chi * df.Is * df.xst + df.Is / df.beta *
                 (1 - exp(-df.beta * df.xst))),
            ),
            var=["xst", "Phi_M", "chi", "Is", "beta"],
            out=["T_f", "T_p"],
        ) >> cp_bounds(
            ## Normalized axial location; xi = x/L (-)
            xi=(0, 1), ) >> cp_marginals(
                ## Channel width (m)
                H={
                    "dist": "uniform",
                    "loc": 0.038,
                    "scale": 0.004
                },
                ## Channel length (m)
                L={
                    "dist": "uniform",
                    "loc": 0.152,
                    "scale": 0.016
                },
                ## Fluid bulk velocity (m/s)
                U={
                    "dist": "uniform",
                    "loc": 1,
                    "scale": 2.5
                },
                ## Fluid kinematic viscosity (m^2/s)
                nu_f={
                    "dist": "uniform",
                    "loc": 1.4e-5,
                    "scale": 0.1e-5
                },
                ## Particle isobaric heat capacity (J/(kg K))
                cp_p={
                    "dist": "uniform",
                    "loc": 100,
                    "scale": 900
                },
                ## Fluid isobaric heat capacity (J/(kg K))
                cp_f={
                    "dist": "uniform",
                    "loc": 1000,
                    "scale": 1000
                },
                ## Fluid thermal diffusivity (m^2/s)
                alpha_f={
                    "dist": "uniform",
                    "loc": 50e-6,
                    "scale": 50e-6
                },
                ## Particle density (kg / m^3)
                rho_p={
                    "dist": "uniform",
                    "loc": 1e3,
                    "scale": 9e3
                },
                ## Fluid density (kg / m^3)
                rho_f={
                    "dist": "uniform",
                    "loc": 0.5,
                    "scale": 1.0
                },
                ## Particle diameter (m)
                d_p={
                    "dist": "uniform",
                    "loc": 1e-6,
                    "scale": 9e-6
                },
                ## Particle number density (1 / m^3)
                n={
                    "dist": "uniform",
                    "loc": 9.5e9,
                    "scale": 1.0e9
                },
                ## Particle-to-gas convection coefficient (W / (m^2 K))
                h_p={
                    "dist": "uniform",
                    "loc": 1e3,
                    "scale": 9e3
                },
                ## Initial temperature (K)
                T_0={
                    "dist": "uniform",
                    "loc": 285,
                    "scale": 30
                },
                ## Particle radiation absorption coefficient (-)
                Q_abs={
                    "dist": "uniform",
                    "loc": 0.25,
                    "scale": 0.50
                },
                ## Incident radiation (W/m^2)
                I_0={
                    "dist": "uniform",
                    "loc": 9.5e6,
                    "scale": 1.0e6
                },
            ) >> cp_copula_independence())

    return md
Ejemplo n.º 16
0

var_applied = ["L", "w", "t"]
out_applied = ["sig_app"]


def fun_limit(x):
    sig_cr, sig_app = x
    return sig_cr - sig_app


var_limit = ["sig_cr", "sig_app"]
out_limit = ["safety"]

## Build model
md_plate = (
    gr.Model("Plate under buckling load") >> gr.cp_function(
        fun=fun_critical, var=var_critical, out=out_critical, name="Critical")
    >> gr.cp_function(
        fun=fun_applied, var=var_applied, out=out_applied, name="Applied") >>
    gr.cp_function(fun=fun_limit, var=var_limit, out=out_limit,
                   name="Safety") >> gr.cp_bounds(  # Deterministic variables
                       t=(0.03, 0.12),  # Thickness
                       w=(6, 18),  # Width
                       h=(6, 18),  # Height
                       L=(2.5e-1, 4.0e-1),  # Load
                   ) >> gr.cp_marginals(  # Random variables
                       E=gr.marg_gkde(df_stang.E),
                       mu=gr.marg_gkde(df_stang.mu)) >>
    gr.cp_copula_gaussian(df_data=df_stang))  # Dependence