Ejemplo n.º 1
0
    def quantize(self, G: NNGraph) -> OrderedDict:
        edge_recs = {}
        result = OrderedDict()
        for step in G.graph_state.steps:
            node = step['node']
            if isinstance(node, InputParameters):
                in_qs = []
            else:
                in_qs = [
                    edge_recs[edge.params]
                    for edge in G.indexed_in_edges(node.name)
                ]
            if isinstance(node, FusionParameters):
                fin_qs = in_qs
                for fnode in node.contained_nodes():
                    qrec = self.calculate_q(
                        fnode, self._activation_stats.get(NodeId(node, fnode)),
                        self._filter_stats.get(NodeId(node, fnode)), fin_qs,
                        self._min_qsnr, self._force_width)
                    result[NodeId(node, fnode)] = qrec
                    fin_qs = qrec.out_qs
                qrec = QuantizationRecord(in_qs=in_qs, out_qs=fin_qs)
            else:
                qrec = self.calculate_q(
                    node, self._activation_stats.get(NodeId(node, None)),
                    self._filter_stats.get(NodeId(node, None)), in_qs,
                    self._min_qsnr, self._force_width)
            result[NodeId(node, None)] = qrec
            if not qrec:
                break

            for edges in G.indexed_out_edges(node.name):
                for edge in edges:
                    edge_recs[edge.params] = qrec.out_qs[edge.from_idx]
        return result
Ejemplo n.º 2
0
    def quantize(self, G: NNGraph) -> OrderedDict:
        '''quantize the graph'''
        if G.has_quantized_parameters:
            self.dequantize(G)
            G.has_quantized_parameters = False
            G.quantization = None

        self.qrecs = QuantizationSet()
        edge_recs = {}
        opts = {
            'force_width': self._force_width,
            'quantized_dimension': self._quantized_dimension,
            'narrow_weights': self._narrow_weights
        }
        opts.update(self._options)
        quant_kwargs = {
            'opts': opts,
            'all_stats': self._activation_stats,
            'G': G,
            'qrecs': self.qrecs
        }
        dtype = WIDTH_TO_DTYPE[self._force_width]
        self.quantize_forward(edge_recs, dtype=dtype, **quant_kwargs)
        self.qrecs['__quantizer'] = self
        G.graph_identity.quantization_type = 'SQ8'
        return self.qrecs
Ejemplo n.º 3
0
 def quantize(self, G: NNGraph) -> OrderedDict:
     '''quantize the graph'''
     if G.has_quantized_parameters:
         self.dequantize(G)
         G.has_quantized_parameters = False
         G.quantization = None
     edge_recs = {}
     dtype = WIDTH_TO_DTYPE[self._force_width]
     qrecs = self.quantize_forward(G, edge_recs, dtype)
     qrecs['__quantizer'] = self
     G.graph_identity.quantization_type = 'SQ8'
     return qrecs
Ejemplo n.º 4
0
def propagate_downwards(G: NNGraph):
    for node in G.dfs():
        # First propagate the in dim hints to the out dim hints
        # Any node that does not want this to happen should set its out dim hints

        if node.in_dims_hint is not None:
            if isinstance(node, ReshapeParameters):
                if len(node.old_shape) == len(node.in_dims_hint[0]):
                    LOG.debug("set reshape %s in dims hint %s", node.name,
                              node.in_dims_hint[0])
                    node.old_shape.apply_naming_hints(node.in_dims_hint[0])
            elif isinstance(node, GlobalPoolParameters):
                if node.keep_dims:
                    node.out_dims_hint = deepcopy(node.in_dims_hint)
            elif isinstance(node, MatrixBroadcastedLinearOpParameters):
                max_hint = None
                for hint in node.in_dims_hint:
                    if hint is not None and (max_hint is None
                                             or len(hint) > len(max_hint)):
                        max_hint = hint
                if max_hint is not None:
                    node.out_dims_hint = [max_hint]
            elif isinstance(node, ConcatParameters):
                # if any incoming edge of the concat doesn't have a hint
                # set it the same as the others
                any_in_hint = next(
                    (hint for hint in node.in_dims_hint if hint is not None),
                    None)
                if any_in_hint:
                    LOG.debug("set concat %s in dims hint %s", node.name,
                              any_in_hint)
                    for edge in G.in_edges(node.name):
                        if not node.in_dims_hint[edge.to_idx]:
                            node.in_dims_hint[edge.to_idx] = any_in_hint
                    node.out_dims_hint = [any_in_hint]
            else:
                if node.out_dims_hint is None:
                    node.out_dims_hint = deepcopy(node.in_dims_hint)

        # if we have an out dim hint then propagate it to downstream nodes
        if node.out_dims_hint is not None:
            LOG.debug("propagate down hint from %s", node.name)
            for edge in G.out_edges(node.name):
                hint = node.out_dims_hint[edge.from_idx]
                if hint is None:
                    continue
                if edge.to_node.in_dims_hint is None:
                    edge.to_node.in_dims_hint = SparseList()
                if edge.to_node.in_dims_hint[edge.to_idx] is None:
                    edge.to_node.in_dims_hint[edge.to_idx] = hint
Ejemplo n.º 5
0
    def quantize_forward(self, G: NNGraph, edge_recs, result=None):
        if result is None:
            result = QuantizationSet()
        for node in [step['node'] for step in G.graph_state.steps]:
            LOG.debug("quantize forward %s", node.name)
            in_qs = self.get_in_qs(G, edge_recs, node)
            if isinstance(node, ConvFusionParameters):
                qrec, qrecs = self.quantize_fusion(G, node, in_qs)
                for node_id, fqrec in qrecs.items():
                    result[node_id] = fqrec
            elif isinstance(node, ConcatParameters):
                qrec = self.quantize_backward(G, result, edge_recs, node)
            else:
                qrec = self.calculate_q(
                    node, self._activation_stats.get(NodeId(node, None)),
                    self._filter_stats.get(NodeId(node, None)), in_qs,
                    self._min_qsnr, self._force_width)
            result[NodeId(node, None)] = qrec
            if not qrec:
                break

            for edges in G.indexed_out_edges(node.name):
                for edge in edges:
                    edge_recs[edge.params] = qrec.out_qs[edge.from_idx]
        return result
Ejemplo n.º 6
0
 def replace_function(self, G: NNGraph, subgraph: GraphView):
     step = 0
     for node in subgraph.nodes():
         node.step_idx = step
         step = step + 1
         if isinstance(node, FcParameters):
             linear_name = node.name + "_fusion"
             break
     LOG.info("fusing nodes %s", ",".join(
         (node.name for node in subgraph.nodes())))
     # simple node order is necessary because nodes() will not necessarily
     # be in order
     pnode = ConvFusionParameters(linear_name, fusion_type="linear_active", subgraph=subgraph)
     if G.quantization:
         qrecs = G.quantization.get_all(pnode.contained_nodes())
         if qrecs:
             if isinstance(qrecs[0], (SymmetricQuantizationRecord, SymmetricScalableFilterQuantizationRecord)):
                 prec = SymmetricQuantizationRecord(
                     in_qs=qrecs[0].in_qs, out_qs=qrecs[-1].out_qs)
             elif isinstance(qrecs[0], (MultQuantizationRecord, MultScalableFilterQuantizationRecord)):
                 prec = MultQuantizationRecord(in_qs=qrecs[0].in_qs, out_qs=qrecs[-1].out_qs)
             elif isinstance(qrecs[0], (Float32QuantizationRecord, Float32ScalableFilterQuantizationRecord)):
                 prec = Float32QuantizationRecord(in_qs=qrecs[0].in_qs, out_qs=qrecs[-1].out_qs)
             for node in pnode.contained_nodes():
                 G.quantization.move_to_fusion(node, pnode)
             G.quantization[NodeId(pnode)] = prec
     return pnode, None, None
Ejemplo n.º 7
0
 def replace_function(self, G: NNGraph, subgraph: GraphView):
     nodes = list(subgraph.nodes())
     pnode = ActivationFusion(nodes[0].name + "fusion",
                              nodes[0].op_name + "_active", subgraph)
     nodes[0].step_idx = 0
     nodes[1].step_idx = 1
     LOG.debug("fused nodes %s", ",".join((node.name for node in nodes)))
     if G.quantization:
         qrecs = G.quantization.get_all(subgraph.nodes())
         if qrecs:
             if isinstance(qrecs[0],
                           (SymmetricQuantizationRecord,
                            SymmetricScalableFilterQuantizationRecord)):
                 prec = SymmetricQuantizationRecord(in_qs=qrecs[0].in_qs,
                                                    out_qs=qrecs[-1].out_qs)
             elif isinstance(qrecs[0],
                             (MultQuantizationRecord,
                              MultScalableFilterQuantizationRecord)):
                 prec = MultQuantizationRecord(in_qs=qrecs[0].in_qs,
                                               out_qs=qrecs[-1].out_qs)
             elif isinstance(qrecs[0],
                             (Float32QuantizationRecord,
                              Float32ScalableFilterQuantizationRecord)):
                 prec = Float32QuantizationRecord(in_qs=qrecs[0].in_qs,
                                                  out_qs=qrecs[-1].out_qs)
             for node in subgraph.nodes():
                 G.quantization.move_to_fusion(node, pnode)
             G.quantization[NodeId(pnode)] = prec
     return pnode
Ejemplo n.º 8
0
def propagate_upwards(G: NNGraph):
    for node in G.dfs(reverse=True):
        # First propagate the out dim hints to the in dim hints
        # Any node that does not want this to happen should set its in dim hints

        if node.out_dims_hint is not None:
            if isinstance(node, ReshapeParameters):
                if len(node.shape) < len(node.out_dims_hint[0]):
                    node.shape = Dim.unnamed((
                        [1] * (len(node.out_dims_hint[0]) - len(node.shape))) +
                                             node.shape.shape)
                node.shape.apply_naming_hints(node.out_dims_hint[0])
                if node.in_dims_hint is None:
                    node.in_dims_hint = SparseList(
                        [["%s" % i for i in range(len(node.old_shape))]])
            elif isinstance(node, MatrixBroadcastedLinearOpParameters):
                node.in_dims_hint = [node.out_dims_hint[0]] * 2
            elif isinstance(node, MatrixMulParameters):
                continue
            elif isinstance(node, GlobalPoolParameters):
                if node.keep_dims:
                    node.in_dims_hint = deepcopy(node.out_dims_hint)
            elif isinstance(
                    node, ConstantInputParameters) and not node.dims.is_named:
                node.dims.apply_naming_hints(node.out_dims_hint[0])
            else:
                if node.in_dims_hint is None:
                    node.in_dims_hint = deepcopy(node.out_dims_hint)

        # if we have an in dim hint then propagate it to upstream nodes
        if node.in_dims_hint is not None:
            for edge in G.in_edges(node.name):
                hint = node.in_dims_hint[edge.to_idx]
                if hint is None:
                    continue
                if edge.from_node.out_dims_hint is None:
                    edge.from_node.out_dims_hint = SparseList()
                if edge.from_node.out_dims_hint[edge.from_idx] is None:
                    edge.from_node.out_dims_hint[edge.from_idx] = hint
                    if isinstance(edge.from_node, InputParameters):
                        assert edge.from_idx == 0, "input node should only have one output"
                        dims_len = len(edge.from_node.dims)
                        hint_len = len(hint)
                        if dims_len < hint_len:
                            edge.from_node.dims = Dim.unnamed(
                                [1] * (hint_len - dims_len) +
                                edge.from_node.dims.shape)
Ejemplo n.º 9
0
    def _common(cls, node, **kwargs):
        all_nodes = kwargs['all_nodes']
        G = kwargs['G']
        valid_name = kwargs['valid_name']

        inputs = [all_nodes[inp] for inp in node.input]

        if not all(cls.is_constant(inp) for inp in inputs):
            raise NotImplementedError(
                "nntool does not support import of graphs with evaluated loops"
            )

        importer = kwargs['importer']
        sub_G = NNGraph()
        all_nodes_clone = all_nodes.copy()
        importer.import_subgraph(sub_G,
                                 node.attrs['body'], {},
                                 all_nodes=all_nodes_clone)
        if not all(
                isinstance(inp, (InputParameters, ConstantInputParameters))
                for inp in sub_G.inputs()):
            raise NotImplementedError(
                "nntool does not support import of graphs with evaluated loops"
            )
        sub_G.add_dimensions()
        for idx, inp in enumerate(sub_G.inputs()):
            inp.index = idx

        logger.info(f"reducing loop {valid_name} to a constant")
        count = inputs[0][0].value
        keep_going = inputs[1][0].value
        loop_carried = [inp[0].value for inp in inputs[2:]]
        outputs = [np.array([])] * len(node.output)
        while keep_going and count > 0:
            executer = GraphExecuter(sub_G)
            output_tensors = executer.execute([count, keep_going] +
                                              loop_carried,
                                              silent=True)
            outp_vals = [
                output_tensors[node.step_idx][0] for node in sub_G.outputs()
                if not isinstance(node, InputParameters)
            ]
            keep_going = outp_vals[0]
            for idx, val in enumerate(outp_vals[1:]):
                if idx < len(loop_carried):
                    loop_carried[idx] = outputs[idx] = val
                elif outputs[idx] is None:
                    outputs[idx] = val
                else:
                    outputs[idx] = np.concatenate((outputs[idx], val))
            count -= 1
        for idx, outp in enumerate(node.output):
            params = ConstantInputParameters(
                G.unique_name(f'{valid_name}_out{idx}'),
                value=outputs[idx],
                dims=Dim.unnamed(outputs[idx].shape))
            all_nodes[outp] = (params, 0, ProvisionalDim(outputs[idx].shape),
                               None)

        return None
Ejemplo n.º 10
0
 def dequantize(self, G: NNGraph):
     qrecs = G.quantization
     LOG.info("dequantizing graph parameters")
     for _, node, _, fnode in G.nodes_iterator():
         qrec = qrecs[NodeId(node, fnode)]
         anode = node if fnode is None else fnode
         handler = self.handlers[1].get(anode.__class__)
         if handler:
             handler.dequantize(anode, qrec)
Ejemplo n.º 11
0
 def initialize_edge_recs(G: NNGraph, qrecs):
     '''Initialize edge rec dictionary to current quantization settings'''
     edge_recs = {}
     for node in [step['node'] for step in G.graph_state.steps]:
         nodeid = NodeId(node)
         qrec = qrecs[nodeid]
         for edges in G.indexed_out_edges(node.name):
             for edge in edges:
                 edge_recs[edge.params] = qrec.out_qs[edge.from_idx]
     return edge_recs
Ejemplo n.º 12
0
def create_graph(filename, opts):
    cfg = read_cfg(filename)
    out_graph = NNGraph(model=cfg,
                        filename=filename,
                        name=opts.get('name'),
                        value_cache=opts.get('value_cache'))
    create_subgraph(out_graph, cfg)
    leaf_nodes = list([n for n in out_graph.nodes()\
        if out_graph.out_degree(n) == 0 and out_graph.in_degree(n) > 0])
    for node in leaf_nodes:
        out_graph.add_edge(node, out_graph.add_output(), order=0)
    return out_graph
Ejemplo n.º 13
0
 def create_graph(self, filename, opts):
     model = onnx.load(filename)
     self._name_cache = {}
     if model.ir_version < 3:
         opset_import = [make_opsetid(defs.ONNX_DOMAIN, 1)]
     else:
         opset_import = model.opset_import
     G = NNGraph(filename=filename,
                 name=opts.get('name'),
                 constant_store=ConstantStore())
     return self._import_onnx_model(G, model.graph, opset_import, opts)
Ejemplo n.º 14
0
    def create_graph(self, filename, opts) -> NNGraph:
        opts = self.get_opts(opts)
        model = onnx.load(filename)

        # onnx.checker.check_model(model)
        try:
            model = shape_inference.infer_shapes(model)
        except RuntimeError as ex:
            msg = "\n".join(f">   {line}" for line in str(ex).split("\n")
                            if line)
            logger.warning(
                'shape inference failed on onnx graph. '
                f'This may not affect import.\nONNX runtime error was:\n{msg}')

        self._name_cache = {}
        if model.ir_version < 3:
            opset_import = [make_opsetid(defs.ONNX_DOMAIN, 1)]
        else:
            opset_import = model.opset_import
        G = NNGraph(filename=filename, name=opts.get('name'))
        G, qrecs = self._import_onnx_model(G, model.graph, opset_import, opts)
        G.add_dimensions(quiet=True)
        if qrecs:
            propagate_qrecs(G, qrecs)
            qset = QuantizationSet()
            qset.update(qrecs)
            qset.scheme_priority = ['SQ8']
            qset.schemes_present = {'SQ8'}
            G.quantization = qset
            try:
                quantizer = NewQuantizer(G)
                quantizer.quantize()
            except ValueError as ex:
                logger.warning(
                    f'unable to import quantization from FakeQuantize nodes correctly - {ex}'
                )

        clean_dangling_nodes(G)
        MatchDuplicateConstants().match(G)
        return G
Ejemplo n.º 15
0
def add_node(G: NNGraph, node: Node, anode: Node = None) -> str:
    G.add_node(node)
    if not anode:
        return (node.name, node.name)
    G.add_node(anode)
    G.add_edge(NNEdge(node, anode))
    return (node.name, anode.name)
Ejemplo n.º 16
0
def fix_split_in_edges(G: NNGraph):
    for split in [node for node in G.nodes() if isinstance(node, SplitParameters)]:
        in_edge = G.in_edges(split.name)[0]
        if in_edge.to_idx == 0:
            continue
        G.remove_edge(in_edge)
        G.add_edge(NNEdge(in_edge.from_node, in_edge.to_node, from_idx=in_edge.from_idx))
Ejemplo n.º 17
0
def propagate_downwards(G: NNGraph):
    for node in G.dfs():
        # First propagate the in dim hints to the out dim hints
        # Any node that does not want this to happen should set its out dim hints

        if node.in_dims_hint is not None:
            if isinstance(node, ReshapeParameters):
                assert len(node.old_shape) == len(node.in_dims_hint[0]), "reshape doesn't match input"
                node.old_shape.apply_naming_hints(node.in_dims_hint[0])
            else:
                if node.out_dims_hint is None:
                    node.out_dims_hint = deepcopy(node.in_dims_hint)

        # if we have an out dim hint then propagate it to downstream nodes
        if node.out_dims_hint is not None:
            for edge in G.out_edges(node.name):
                
                hint = node.out_dims_hint[edge.from_idx]
                if edge.to_node.in_dims_hint is None:
                    edge.to_node.in_dims_hint = SparseList()
                if edge.to_node.in_dims_hint[edge.to_idx] is None:
                    edge.to_node.in_dims_hint[edge.to_idx] = hint
Ejemplo n.º 18
0
 def dequantize(self, G: NNGraph):
     qrecs = G.quantization
     LOG.info("dequantizing graph parameters")
     for _, node, _, fnode in G.nodes_iterator():
         qrec = qrecs[NodeId(node, fnode)]
         if isinstance(node, ConstantInputParameters):
             node.value = qrec.out_q[0].dequantize(node.value)
         else:
             anode = node if fnode is None else fnode
             if isinstance(anode, (FcParameters, Conv2DParameters)):
                 if anode.has_bias:
                     anode.biases = qrec.biases_q.dequantize(anode.biases)
                 anode.weights = qrec.weights_q.dequantize(anode.weights)
Ejemplo n.º 19
0
def propagate_upwards(G: NNGraph):
    for node in G.dfs(reverse=True):
        # First propagate the out dim hints to the in dim hints
        # Any node that does not want this to happen should set its in dim hints

        if node.out_dims_hint is not None:
            if isinstance(node, ReshapeParameters):
                assert len(node.shape) == len(node.out_dims_hint[0])
                node.shape.apply_naming_hints(node.out_dims_hint[0])
                if node.in_dims_hint is None:
                    node.in_dims_hint = SparseList([["%s" % i for i in range(len(node.old_shape))]])
            else:
                if node.in_dims_hint is None:
                    node.in_dims_hint = deepcopy(node.out_dims_hint)

        # if we have an in dim hint then propagate it to upstream nodes
        if node.in_dims_hint is not None:
            for edge in G.in_edges(node.name):
                hint = node.in_dims_hint[edge.to_idx]
                if edge.from_node.out_dims_hint is None:
                    edge.from_node.out_dims_hint = SparseList()
                if edge.from_node.out_dims_hint[edge.from_idx] is None:
                    edge.from_node.out_dims_hint[edge.from_idx] = hint
Ejemplo n.º 20
0
 def report(self, G: NNGraph, stats):
     dump_stats = OrderedDict()
     for step_idx, node, fusion_idx, fnode in G.nodes_iterator(self._yield_fusions):
         stat = stats[NodeId(node, fnode)]
         stat = copy.deepcopy(stat)
         if fusion_idx:
             name = "{}_{}".format(node.name, fusion_idx)
             idx = "{}_{}".format(step_idx, fusion_idx)
         else:
             name = node.name
             idx = str(step_idx)
         dump_stats[name] = stat
         stat['idx'] = idx
     return dump_stats_table(dump_stats, do_totals=self._do_totals, threshold=self._threshold)
Ejemplo n.º 21
0
def create_graph(filename, opts):
    buf = open(filename, "rb").read()
    model = Model.Model.GetRootAsModel(buf, 0)
    LOG.info("Importing TFLITE model version %s", model.Version())
    check(model.Version() == 3, "Only support version 3 graphs at present")
    check(model.SubgraphsLength() == 1,
          "Only supports one subgraph at present")
    G = NNGraph(model=model,
                filename=filename,
                name=opts.get('name'),
                value_cache=opts.get('value_cache'))
    create_subgraph(G, model, 0, load_tensors=opts.get('load_tensors'),\
        dequantize=opts.get('dequantize'))
    return G
Ejemplo n.º 22
0
 def create_graph(self, filename, opts):
     opts = self.get_opts(opts)
     model = onnx.load(filename)
     self._name_cache = {}
     if model.ir_version < 3:
         opset_import = [make_opsetid(defs.ONNX_DOMAIN, 1)]
     else:
         opset_import = model.opset_import
     G = NNGraph(filename=filename,
                 name=opts.get('name'),
                 constant_store=ConstantStore())
     G = self._import_onnx_model(G, model.graph, opset_import, opts)
     clean_dangling_nodes(G)
     MatchDuplicateConstants().match(G)
     return G
Ejemplo n.º 23
0
    def quantize_forward(self, G: NNGraph, edge_recs, dtype=np.int8):
        for node in [step['node'] for step in G.graph_state.steps]:
            LOG.debug("quantize forward %s", node.name)
            in_qs = self.get_in_qs(G, edge_recs, node)
            if isinstance(node, (ConvFusionParameters, ActivationFusion)):
                qrec = self.quantize_fusion(G, node, in_qs, dtype)
            else:
                qrec = self.calculate_q(G,
                                        node,
                                        self._activation_stats.get(
                                            NodeId(node, None)),
                                        in_qs,
                                        dtype)
            self.qrecs[NodeId(node, None)] = qrec
            if not qrec:
                break

            for edges in G.indexed_out_edges(node.name):
                for edge in edges:
                    edge_recs[edge.params] = qrec.out_qs[edge.from_idx]
Ejemplo n.º 24
0
    def create_graph(self, filename, opts):
        opts = self.get_opts(opts)
        self._name_cache = {}
        add_sys_path(os.path.dirname(__file__))
        buf = open(filename, "rb").read()
        model = Model.GetRootAsModel(buf, 0)
        LOG.info("Importing TFLITE model version %s", model.Version())
        check(model.Version() == 3, "Only support version 3 graphs at present")
        if model.SubgraphsLength() > 1:
            LOG.warning("nntool only supports one subgraph. There may be errors loading this graph.")
        G = NNGraph(model=model, filename=filename, name=opts.get('name'),
                    constant_store=ConstantStore())
        if opts.get('load_quantization'):
            G.quantization = QuantizationSet()
            G.has_quantized_parameters = True
            G.graph_identity.quantization_types.add('SQ8')

        self._import_tflite_graph(G, TFLiteGraph.from_model(model, 0), opts)
        clean_dangling_nodes(G)
        fix_split_in_edges(G)
        MatchDuplicateConstants().match(G)
        G.add_dimensions()
        remove_concats(G)
        if opts['remove_quantize_ops']:
            RemoveQuantizeOperators().match(G)
            G.add_dimensions()

        if opts.get('load_quantization'):
            # get rid of qrecs on nodes that were not used
            to_remove = []
            for nid in G.quantization:
                if nid.node_name not in G:
                    to_remove.append(nid)
            for nid in to_remove:
                del G.quantization[nid]

        return G
Ejemplo n.º 25
0
    def propagate_forward(self, G: NNGraph, edge_recs, start_node,
                          new_out_qrec, result):
        '''Propagate a new output qrec at node start_node in the graph'''
        found_node = False
        for node in [step['node'] for step in G.graph_state.steps]:
            if found_node:
                LOG.debug("propagate forwards %s", node.name)
                in_qs = self.get_in_qs(G, edge_recs, node)
                if isinstance(node, ConvFusionParameters):
                    qrec, qrecs = self.quantize_fusion(G, node, in_qs)
                    for node_id, fqrec in qrecs.items():
                        result[node_id] = fqrec
                elif isinstance(node, ConcatParameters):
                    qrec = self.quantize_backward(G, result, edge_recs, node)
                else:
                    qrec = self.calculate_q(
                        node, self._activation_stats.get(NodeId(node, None)),
                        self._filter_stats.get(NodeId(node, None)), in_qs,
                        self._min_qsnr, self._force_width)
            else:
                if node == start_node:
                    found_node = True
                    qrec = self.quantize_backward(G,
                                                  result,
                                                  edge_recs,
                                                  node,
                                                  force_out=new_out_qrec)
                else:
                    continue

            result[NodeId(node, None)] = qrec
            if not qrec:
                break

            for edges in G.indexed_out_edges(node.name):
                for edge in edges:
                    edge_recs[edge.params] = qrec.out_qs[edge.from_idx]
Ejemplo n.º 26
0
    def report(self, G: NNGraph, nodes=None) -> Tabular:
        if nodes is None:
            nodes = G.nodes()

        nodes = sorted(nodes, key=lambda x: x.step_idx)
        start_step = nodes[0].step_idx
        end_step = nodes[-1].step_idx

        steps = G.graph_state.steps
        liveness = G.graph_state.liveness
        first_node = steps[start_step]['node']
        active_order = "x".join(first_node.out_dims[0].order)
        tab = Tabular()
        self.do_headers(active_order, tab)

        max_active = 0
        tot_params = 0
        tot_ops = 0

        for i, node, active, params_size, ops in graph_walk(steps, liveness):
            if node.step_idx < start_step or node.step_idx > end_step:
                continue

            tot_params += params_size
            if ops:
                tot_ops += ops
            if active > max_active:
                max_active = active

            if self._show_constants or not isinstance(node,
                                                      ConstantInputParameters):
                self.do_operation(node, G, tab, i, active, params_size, ops)

        if start_step != end_step:
            self.check_do_totals(tab, max_active, tot_params, tot_ops)
        return tab
Ejemplo n.º 27
0
def two_conv_graph():
    G = NNGraph(name='two_conv_graph')
    ti = G.add_input(Dim.unnamed([10, 10, 2]))
    c1filt = Conv2DFilterDim(3, 3, 2, in_c=2)
    c1filt.impose_order(['out_c', 'h', 'w', 'in_c'])
    n1 = Conv2DParameters("node1",
                          filt=c1filt,
                          stride=StrideDim(1, 1),
                          padding=PadDim(0),
                          in_dims_hint=SparseList([['h', 'w', 'c']]),
                          out_dims_hint=SparseList([['h', 'w', 'c']]))
    G.add_node(n1)
    w1 = [[0.25, 0.25], [0.25, 0.25], [0.25, 0.25]]
    w1 = [w1, w1, w1]
    w2 = [[0.75, 0.75], [0.75, 0.75], [0.75, 0.75]]
    w2 = [w2, w2, w2]
    n1.weights = np.array([w1, w2])
    c2filt = Conv2DFilterDim(3, 3, 2, in_c=2)
    c2filt.impose_order(['out_c', 'h', 'w', 'in_c'])
    n2 = Conv2DParameters("node2",
                          filt=c2filt,
                          stride=StrideDim(1, 1),
                          padding=PadDim(0),
                          in_dims_hint=SparseList([['h', 'w', 'c']]),
                          out_dims_hint=SparseList([['h', 'w', 'c']]))
    G.add_node(n2)
    w3 = [[0.75, 0.25], [0.75, 0.25], [0.75, 0.25]]
    w3 = [w3, w3, w3]
    n2.weights = np.array([w3, w3])
    to = G.add_output()
    G.add_edge(NNEdge(ti, n1))
    G.add_edge(NNEdge(n1, n2))
    G.add_edge(NNEdge(n2, to))
    G.add_dimensions()
    yield G
Ejemplo n.º 28
0
    def report(self,
               G: NNGraph,
               nodes=None,
               graph_format='PDF',
               all_dims=False,
               filename=None,
               view=True,
               anonymise=False,
               expressions=False,
               quant_labels=False):
        if nodes is None:
            nodes = set(G.nodes())

        self.init_name_cache()
        all_ports = {}
        graph_name = G.graphname if hasattr(G, 'graphname') else 'graph'
        dot = Digraph(comment=graph_name,
                      format=graph_format,
                      node_attr={'height': '.1'},
                      edge_attr={'fontsize': '10.0'})
        fake_idx = 0
        for node in G.dfs():
            if node not in nodes:
                continue
            if expressions and isinstance(node, ExpressionFusionParameters):
                all_ports[node] = self.report_expression(
                    dot,
                    G,
                    node,
                    anonymise=anonymise,
                    report_quantized=expressions == "quantized")
            else:
                num_in_edges = len(G.indexed_in_edges(node.name))
                num_out_edges = len(G.indexed_out_edges(node.name))
                ports = all_ports.setdefault(node, [None] * 2)
                names = self.build_nodebox(node,
                                           ports,
                                           num_in_edges,
                                           num_out_edges,
                                           anon=anonymise)
                dot.node(node.name,
                         nohtml(names),
                         shape='record',
                         xlabel=str(node.step_idx))
            for edge in G.in_edges(node.name):
                if edge.from_node not in nodes:
                    if not all_dims:
                        continue

                out_port, in_port = self.get_ports(all_ports, edge)
                if edge.from_node in nodes:
                    from_node_id = self.get_from_id(all_ports, edge, out_port)
                    to_node_id = self.get_to_id(all_ports, edge, in_port)
                    dot.edge(from_node_id,
                             to_node_id,
                             xlabel=self.in_label(G, node, edge.to_idx,
                                                  quant_labels))
                else:
                    fake_name = f'fake_{fake_idx}'
                    fake_idx += 1
                    dot.node(fake_name, shape='point', fillcolor='black')
                    to_node_id = self.get_to_id(all_ports, edge, in_port)
                    dot.edge(fake_name,
                             to_node_id,
                             xlabel=self.in_label(G, node, edge.to_idx,
                                                  quant_labels))
            if not all_dims:
                continue
            for edge_group in G.indexed_out_edges(node.name):
                if any(edge.to_node in nodes for edge in edge_group):
                    continue
                edge = edge_group[0]
                out_port, _ = self.get_ports(all_ports, edge)
                fake_name = f'fake_{fake_idx}'
                fake_idx += 1
                dot.node(fake_name,
                         shape='plaintext',
                         label=' ',
                         fillcolor='black')
                from_node_id = self.get_from_id(all_ports, edge, out_port)
                dot.edge(from_node_id,
                         fake_name,
                         xlabel=self.out_label(G, node, edge.from_idx,
                                               quant_labels))

        # dot = dot.unflatten(stagger=2)
        if filename:
            dot.render(filename, cleanup=True)
        if view:
            filename = tempfile.mktemp('.gv')
            dot.view(filename, cleanup=True, quiet=True)
        self.reset_name_cache()
Ejemplo n.º 29
0
    def quantize_backward(self,
                          G: NNGraph,
                          result,
                          edge_recs,
                          node,
                          force_out=None):

        LOG.debug("quantize backwards %s", node.name)
        recalculated = False
        while True:
            in_qs = self.get_in_qs(G, edge_recs, node)
            if self.is_filter_node(node):
                if isinstance(node, ConvFusionParameters):
                    qrec, qrecs = self.quantize_fusion(G,
                                                       node,
                                                       in_qs,
                                                       force_out=force_out)
                    for node_id, fqrec in qrecs.items():
                        result[node_id] = fqrec
                else:
                    qrec = self.calculate_q(node,
                                            self._activation_stats.get(
                                                NodeId(node, None)),
                                            in_qs,
                                            self._force_width,
                                            force_out=force_out)

                if force_out and force_out.q is not None and qrec.out_qs[
                        0].q < force_out.q:
                    if recalculated:
                        raise NotImplementedError(
                            "no quantization solution found")
                    bits_to_gain = force_out.q - qrec.q
                    if bits_to_gain > in_qs[0].q:
                        raise NotImplementedError()
                    # Try to adjust the inputs to satisfy and then
                    # recalculate
                    pnode = G.in_edges(node.name)[0].from_node
                    self.quantize_backward(G,
                                           result,
                                           edge_recs,
                                           pnode,
                                           force_out=QType(bits=force_out.bits,
                                                           q=in_qs[0].q -
                                                           bits_to_gain,
                                                           signed=True))
            elif isinstance(node, ConcatParameters):
                assert not recalculated
                max_width = max(in_q.bits for in_q in in_qs)
                min_q = min(in_q.q for in_q in in_qs)
                if force_out:
                    if not self.satisfied(force_out.bits, max_width):
                        max_width = force_out.bits
                    if not self.satisfied(force_out.q, min_q):
                        min_q = force_out.q
                LOG.debug("normalizing concat to %s",
                          QType(bits=max_width, q=min_q, signed=True))
                for pidx, pnode in enumerate(
                    [edge.from_node for edge in G.in_edges(node.name)]):
                    pqrec = in_qs[pidx]
                    if pqrec.q != min_q or pqrec.bits != max_width:
                        self.quantize_backward(G,
                                               result,
                                               edge_recs,
                                               pnode,
                                               force_out=QType(bits=max_width,
                                                               q=min_q,
                                                               signed=True))
                o_q = QType(bits=max_width, q=min_q, signed=True)
                qrec = SymmetricQuantizationRecord(in_qs=self.get_in_qs(
                    G, edge_recs, node),
                                                   out_qs=[o_q])
            elif isinstance(node, SoftMaxParameters):
                raise NotImplementedError(
                    "softmax kernel cannot change width or q")
            else:
                if isinstance(node, ConvFusionParameters):
                    qrec, qrecs = self.quantize_fusion(G,
                                                       node,
                                                       in_qs,
                                                       force_out=force_out)
                    for node_id, fqrec in qrecs.items():
                        result[node_id] = fqrec
                else:
                    qrec = self.calculate_q(node,
                                            self._activation_stats.get(
                                                NodeId(node, None)),
                                            in_qs,
                                            self._force_width,
                                            force_out=force_out)
                o_q = qrec.out_qs[0]
                if not (self.satisfied(force_out.q, o_q.q)
                        and self.satisfied(force_out.bits, o_q.bits)):
                    if recalculated:
                        raise NotImplementedError(
                            "no quantization solution found")
                    if len(G.in_edges(node.name)) > 1:
                        raise NotImplementedError(
                            "Nodes with multiple input edges \
                            need custom handling")
                    pnode = G.in_edges(node.name)[0].from_node
                    self.quantize_backward(G,
                                           result,
                                           edge_recs,
                                           pnode,
                                           force_out=force_out)

            for edges in G.indexed_out_edges(node.name):
                for edge in edges:
                    edge_recs[edge.params] = qrec.out_qs[edge.from_idx]

            result[NodeId(node, None)] = qrec

            o_q = qrec.out_qs[0]
            if self.satisfied_force(force_out, o_q):
                break
            if recalculated:
                raise NotImplementedError("no quantization solution found")
            LOG.debug("recalculate %s", node.name)
            recalculated = True
        LOG.debug("back complete %s %s", node.name, qrec)
        return qrec
    def report_graph(self,
                     G: NNGraph,
                     dot,
                     all_ports,
                     fake_idx,
                     nodes=None,
                     all_dims=False,
                     anonymise=False,
                     expressions=False,
                     qrecs=None,
                     fusions=False,
                     parent=None):
        if nodes is None:
            nodes = set(G.nodes())
        for node in G.dfs():
            if node not in nodes:
                continue
            if isinstance(node, (FusionInputParameters)):
                continue
            if expressions and isinstance(node, ExpressionFusionParameters):
                all_ports[node] = self.report_expression(
                    dot,
                    G,
                    node,
                    anonymise=anonymise,
                    report_quantized=expressions == "quantized")
            elif fusions and isinstance(node, FusionBase):
                all_ports[node] = self.report_fusion(dot,
                                                     G,
                                                     node,
                                                     all_ports,
                                                     fake_idx,
                                                     all_dims=all_dims,
                                                     anonymise=anonymise,
                                                     expressions=expressions,
                                                     qrecs=qrecs)

            else:
                num_in_edges = len(G.indexed_in_edges(node.name))
                num_out_edges = len(G.indexed_out_edges(node.name))
                ports = all_ports.setdefault(node, [None] * 2)
                if not isinstance(node, FusionOutputParameters):
                    names = self.build_nodebox(node,
                                               ports,
                                               num_in_edges,
                                               num_out_edges,
                                               anon=anonymise)
                    dot.node(
                        node.name,
                        nohtml(names),
                        shape='record',
                        xlabel=str(node.step_idx),
                        color="blue" if node.is_not_generated else "black")
            for edge in G.in_edges(node.name):
                if edge.from_node not in nodes:
                    if not all_dims:
                        continue

                out_port, in_port = self.get_ports(all_ports, edge)
                if edge.from_node in nodes:
                    from_node_id = self.get_from_id(all_ports, edge, out_port)
                    to_node_id = self.get_to_id(all_ports, edge, in_port)
                    edge_label, edge_error = self.in_label(
                        G,
                        edge,
                        qrecs,
                        parent=parent,
                        from_node=not isinstance(edge.from_node,
                                                 FusionInputParameters),
                        to_node=not isinstance(edge.to_node,
                                               FusionOutputParameters))
                    dot.edge(from_node_id,
                             to_node_id,
                             xlabel=edge_label,
                             color="red" if edge_error else "black")
                else:
                    fake_name = f'fake_{fake_idx}'
                    fake_idx += 1
                    dot.node(fake_name, shape='point', fillcolor='black')
                    to_node_id = self.get_to_id(all_ports, edge, in_port)
                    edge_label, edge_error = self.in_label(G,
                                                           edge,
                                                           qrecs,
                                                           parent=parent)
                    dot.edge(fake_name,
                             to_node_id,
                             xlabel=edge_label,
                             color="red" if edge_error else "black")
            if not all_dims:
                continue
            for edge_group in G.indexed_out_edges(node.name):
                if any(edge.to_node in nodes for edge in edge_group):
                    continue
                edge = edge_group[0]
                out_port, _ = self.get_ports(all_ports, edge)
                fake_name = f'fake_{fake_idx}'
                fake_idx += 1
                dot.node(fake_name,
                         shape='plaintext',
                         label=' ',
                         fillcolor='black')
                from_node_id = self.get_from_id(all_ports, edge, out_port)
                edge_label, edge_error = self.out_label(
                    G,
                    edge,
                    qrecs,
                    parent=parent,
                    from_node=not isinstance(edge.from_node,
                                             FusionInputParameters),
                    to_node=not isinstance(edge.to_node,
                                           FusionOutputParameters))
                dot.edge(from_node_id,
                         fake_name,
                         xlabel=edge_label,
                         color="red" if edge_error else "black")