Ejemplo n.º 1
0
def TrefoilKnot():
     from math import cos,sin,pi
     
     pts = [[0,0,0],[10,0,0],[10,10,0],[0,10,0]]
     doc1 = g.Cn(len(pts))
     doc1['pts'] = pts
     
     t = 0
     dt = .04
     path = []
     while t <= 2*pi + dt:
          # https://en.wikipedia.org/wiki/Trefoil_knot
          x = sin(t) + 2*sin(2*t)
          y = cos(t) - 2*cos(2*t)
          z = -sin(3*t)
          pt = [x,y,z]
          path.append(pt)
          t = t + dt

     C = aff.Center(path)
     degrees = 30
     axis = [0,0,1]
     q = aff.HH.rotation_quaternion(degrees,axis[0],axis[1],axis[2])
     s = [20,20,20] # the same scale as previous for caps
     t = [20,0,0]
     pts = aff.Translate(path,-C[0],-C[1],-C[2],align=False)
     pts = aff.Rotate(pts,q,align=False)
     pts = aff.Scale(pts, s[0],s[1],s[2],align=False)
     pts = aff.Translate(pts,t[0],t[1],t[2],align=False)
     path = pts
     #path = [[0,0,0],[10,1,0],[20,4,0],[30,9,0]]
     H = Extrusion(doc1,path)
     return H
Ejemplo n.º 2
0
def RevolveCurve(curve, t, q, s, n=20, bcap=True, ecap=True):
    # Assume curve has symmetry y-axis
    x0 = curve[0][0]
    x_min = min([pt[0] - x0 for pt in curve])
    x_max = max([pt[0] - x0 for pt in curve])
    y_min = min([pt[1] for pt in curve])
    y_max = max([pt[1] for pt in curve])
    poly_wb = deepcopy(curve)

    pts = [[0, pt[1], 0] for pt in poly_wb]
    y_min = min([pt[1] for pt in poly_wb])
    y_max = max([pt[1] for pt in poly_wb])
    doc = g.Cn(n)
    cx, cy, cz = [0, 0, 0]
    r0 = 1.
    doc1 = CreateCircleGeometry(doc, cx, cy, cz, r0)

    spath = []
    path = []
    pti = poly_wb[0]
    xi, yi = pti
    yi_last = yi

    dx = x_max - x_min
    dy = y_max - y_min
    epsilon = 1e-4
    if abs(dx) > epsilon:
        aspect = 1. * dy / dx
    else:
        aspect = 1. * dx / dy

    for i in range(len(poly_wb)):
        pti = poly_wb[i]
        xi, yi = pti
        r = abs(xi - x0)
        dy = yi - yi_last
        epsilon = .1
        if abs(dy) > epsilon:
            spath.append(r)
            path.append([yi, 0, 0])
        yi_last = yi

    degrees = 90
    axis = [0, 1, 0]
    q0 = aff.HH.rotation_quaternion(degrees, axis[0], axis[1], axis[2])
    q = q * q0
    C = aff.Center(path)
    pts = aff.Translate(path, -C[0], -C[1], -C[2], align=False)
    pts = aff.Rotate(pts, q, align=False)
    pts = aff.Scale(pts, s[0], s[1], s[2], align=False)
    pts = aff.Translate(pts, t[0], t[1], t[2], align=False)
    path = pts
    #path = [[0,0,0],[10,1,0],[20,4,0],[30,9,0]]
    H = ext.Extrusion0(doc1, path, spath, bcap, ecap)
    return H
Ejemplo n.º 3
0
def Parabola():
     pts = [[0,0,0],[10,0,0],[10,10,0],[0,10,0]]
     doc1 = g.Cn(len(pts))
     doc1['pts'] = pts
     x = 0
     dx = .1
     path = []
     while x <= 10:
          pt = [10*x,x**2,0]
          path.append(pt)
          x = x + dx
     #path = [[0,0,0],[10,1,0],[20,4,0],[30,9,0]]
     H = Extrusion(doc1,path)
     return H
Ejemplo n.º 4
0
def Wire0(r, ppath, m=10, n=40):
    assert (len(ppath) >= 2)
    C = [0, 0, 0]
    H1 = gra.Cn(m)
    H1 = gra.CreateCircleGeometry(H1, C[0], C[1], C[2], r)
    t = 0
    dt = 1. / n
    path = []
    while t <= 1:
        pt = B(t, ppath)
        path.append(pt)
        t = t + dt
    H = ext.Extrusion(H1, path, bcap=True, ecap=True, closed=True)
    return H
Ejemplo n.º 5
0
def Cube(ww,hh,dd,mass=1e8):
     G1 = g.Cn(4)
     G2 = g.Pn(2)
     # graph G
     G = g.GraphProduct(G1,G2)
     # points to G
     pts = [[0,0,0],[0,0,dd],[ww,0,0],[ww,0,dd],
            [ww,hh,0],[ww,hh,dd],[0,hh,0],[0,hh,dd]]
     G['pts'] = pts
     # faces to G sorted by normals x,-x,y,-y,z,-z
     F = [[0,1,7,6],[4,5,3,2],[2,3,1,0],
          [6,7,5,4],[2,0,6,4],[1,3,5,7]]
     G['F'] = F
     G['N'] = map(lambda v: FaceNormal(G,v), range(len(F)))
     return G
Ejemplo n.º 6
0
def Torus0(r1,r2,m=10,n=40):
    C = [0,0,0]
    H1 = gra.Cn(m)
    H1 = gra.CreateCircleGeometry(H1,C[0],C[1],C[2],r1)
    t = 0
    dt = 2*pi/n
    path = []
    while t <= 2*pi + dt:
        x = r2*sin(t)
        y = r2*cos(t)
        z = 0
        pt = [x,y,z]
        path.append(pt)
        t = t + dt
    H = ext.Extrusion(H1,path,bcap=False,ecap=False,closed=True)
    return H
Ejemplo n.º 7
0
def Helix0(r, a, b, m=10, n=40, N=1):
    C = [0, 0, 0]
    H1 = gra.Cn(m)
    H1 = gra.CreateCircleGeometry(H1, C[0], C[1], C[2], r)
    t = 0
    dt = 2 * pi / n
    path = []
    while t <= 2 * pi * N + dt:
        # https://en.wikipedia.org/wiki/Helix
        x = a * sin(t)
        y = a * cos(t)
        z = b * t
        pt = [x, y, z]
        path.append(pt)
        t = t + dt
    H = ext.Extrusion(H1, path, bcap=True, ecap=True, closed=True)
    return H
def WaterBottle():
    global poly_wb
    pts = [[0, pt[1], 0] for pt in poly_wb]
    y_min = min([pt[1] for pt in poly_wb])
    y_max = max([pt[1] for pt in poly_wb])
    n = 10
    doc = g.Cn(n)
    cx, cy, cz = [0, 0, 0]
    r = 1.
    doc1 = CreateCircleGeometry(doc, cx, cy, cz, r)

    spath = []
    path = []
    pti = poly_wb[0]
    xi, yi = pti
    yi_last = yi
    sy = 33. / (y_max - y_min)
    for i in range(len(poly_wb)):
        pti = poly_wb[i]
        xi, yi = pti
        r = abs(xi - x0)
        dy = yi - yi_last
        epsilon = .1
        if abs(dy) > epsilon:
            spath.append(r)
            path.append([yi * sy, 0, 0])
        yi_last = yi

    C = aff.Center(path)
    degrees = 90
    axis = [0, 1, 0]
    q = aff.HH.rotation_quaternion(degrees, axis[0], axis[1], axis[2])
    s = [20, 20, 20]  # the same scale as previous for caps
    t = [20, 0, 0]
    pts = aff.Translate(path, -C[0], -C[1], -C[2], align=False)
    pts = aff.Rotate(pts, q, align=False)
    pts = aff.Scale(pts, s[0], s[1], s[2], align=False)
    pts = aff.Translate(pts, t[0], t[1], t[2], align=False)
    path = pts
    #path = [[0,0,0],[10,1,0],[20,4,0],[30,9,0]]
    H = ext.Extrusion0(doc1, path, spath)
    return H
Ejemplo n.º 9
0
def TableLeg(height,radius1,radius2,n=10,m=10):
    h = height
    r1 = radius1
    r2 = radius2
    curve = []
    x0 = 0
    for i in range(1,m-1):
        r = mapto.MapTo(0,r1,m-1,r2,i)
        xi = r
        yi = mapto.MapTo(0,0,m-1,h,i)
        pt = [xi,yi]
        curve.append(pt)
    yi = mapto.MapTo(0,0,m-1,h,.1)
    curve = [[0,yi]]+curve+[[0,height]]

    # Assume curve has symmetry y-axis
    x0 = curve[0][0]
    x_min = min(map(lambda pt: pt[0]-x0,curve))
    x_max = max(map(lambda pt: pt[0]-x0,curve))
    y_min = min(map(lambda pt: pt[1],curve))
    y_max = max(map(lambda pt: pt[1],curve))
    poly_wb = deepcopy(curve)

    pts = map(lambda pt: [0,pt[1],0], poly_wb)
    y_min = min(map(lambda pt: pt[1],poly_wb))
    y_max = max(map(lambda pt: pt[1],poly_wb))
    doc = g.Cn(n)
    cx,cy,cz = [0,0,0]
    r0 = 1.
    doc1 = rc.CreateCircleGeometry(doc,cx,cy,cz,r0)

    spath = []
    path = []
    pti = poly_wb[0]
    xi,yi = pti
    yi_last = yi
    
    dx = x_max-x_min
    dy = y_max-y_min
    epsilon = 1e-4
    if abs(dx) > epsilon:
        aspect = 1.*dy/dx
    else:
        aspect = 1.*dx/dy

    for i in range(len(poly_wb)):
        pti = poly_wb[i]
        xi,yi = pti
        r = abs(xi - x0)
        dy = yi-yi_last
        epsilon = .1
        if abs(dy) > epsilon:
            spath.append(r)
            path.append([yi,0,0])
        yi_last = yi

    degrees = 90+180
    axis = [0,1,0]
    q0 = aff.HH.rotation_quaternion(degrees,axis[0],axis[1],axis[2])
    q = q0
    t = [0,0,-height*.4]
    s = [1,1,1]
    C = aff.Center(path)
    pts = aff.Translate(path,-C[0],-C[1],-C[2],align=False)
    pts = aff.Rotate(pts,q,align=False)
    pts = aff.Scale(pts, s[0],s[1],s[2],align=False)
    pts = aff.Translate(pts,t[0],t[1],t[2],align=False)
    path = pts
    #path = [[0,0,0],[10,1,0],[20,4,0],[30,9,0]]
    H = ext.Extrusion0(doc1,path,spath)
    return H
Ejemplo n.º 10
0
def CoffeeCup0(n=30,m=20,r0=20.):
    flag_cup = True
    flag_handle = True
    H1 = {}
    H1['V'] = []
    H1['E'] = []
    H1['pts'] = []
    H1['F'] = []
    H1['N'] = []
    H2 = {}
    H2['V'] = []
    H2['E'] = []
    H2['pts'] = []
    H2['F'] = []
    H2['N'] = []
    if flag_cup:
         # polygon curve of surface of revolution
         # Create Cup. At present, its imperfect recreating
         # a cover to coffee cup.
         curve1a = [[406, 388], [441, 384], [469, 378], [489, 363], [506, 347],
                   [518, 330], [520, 314], [522, 297], [525, 276], [528, 258],
                   [530, 228], [528, 182], [528, 150], [527, 113], [527, 91],
                   [532, 73], [540, 68]]
         curve1b = [[554, 70], [554, 86], [549, 108],
                   [550, 136], [546, 181], [547, 214], [544, 249], [544, 268],
                   [538, 281], [540, 288], [539, 300], [531, 312], [532, 329],
                   [526, 350], [513, 362], [502, 378], [482, 393], [446, 406],
                   [417, 409]]
         curve1 = curve1a + curve1b
         x0 = curve1[0][0]
         
         x_min = min(map(lambda pt: pt[0]-x0,curve1))
         x_max = max(map(lambda pt: pt[0]-x0,curve1))
         y_min = min(map(lambda pt: pt[1],curve1))
         y_max = max(map(lambda pt: pt[1],curve1))
         degrees = 0
         axis = [0,1,0]
         q = aff.HH.rotation_quaternion(degrees,axis[0],axis[1],axis[2])
         scale = 1.
         s = [scale,scale,scale] # the same scale as previous for caps
         t = [0,0,0]
         H1 = rc.RevolveCurve(curve1,t,q,s, n, bcap=False, ecap=False)
    if flag_handle:
         # Create Handle
         curve2 = [[203, 130], [189, 114], [165, 102], [149, 100], [132, 101],
                   [116, 106], [106, 113], [107, 128], [112, 152], [118, 169],
                   [127, 184], [138, 201], [149, 208], [165, 209], [186, 214],
                   [207, 213]]
         # Assume curve has symmetry y-axis
         x0 = curve2[0][0]
         x_min = min(map(lambda pt: pt[0]-x0,curve2))
         x_max = max(map(lambda pt: pt[0]-x0,curve2))
         y_min = min(map(lambda pt: pt[1],curve2))
         y_max = max(map(lambda pt: pt[1],curve2))
         poly_wb = deepcopy(curve2)

         pts = map(lambda pt: [0,pt[1],0], poly_wb)
         y_min = min(map(lambda pt: pt[1],poly_wb))
         y_max = max(map(lambda pt: pt[1],poly_wb))
         doc = g.Cn(m)
         cx,cy,cz = [0,0,0]
         doc1 = rc.CreateCircleGeometry(doc,cx,cy,cz,r0)

         spath = []
         path = []
         pti = poly_wb[0]
         xi,yi = pti
         yi_last = yi
         
         dx = x_max-x_min
         dy = y_max-y_min

         for i in range(len(poly_wb)):
             pti = poly_wb[i]
             xi,yi = pti
             r = abs(xi - x0)
             dy = yi-yi_last
             epsilon = .1
             if abs(dy) > epsilon:
                 spath.append(1.)
                 path.append([xi,yi,0])

         degrees = 90+180
         axis = [1,0,0]
         q0 = aff.HH.rotation_quaternion(degrees,axis[0],axis[1],axis[2])
         q = q0
         t = [-184,0,100]
         s = [1,1,1]
         C = aff.Center(path)
         pts = aff.Translate(path,-C[0],-C[1],-C[2],align=False)
         pts = aff.Rotate(pts,q,align=False)
         pts = aff.Scale(pts, s[0],s[1],s[2],align=False)
         pts = aff.Translate(pts,t[0],t[1],t[2],align=False)
         path = pts
         H2 = ext.Extrusion0(doc1,path,spath)

    H = ext.GraphUnionS(H1,H2)
    
    return H
Ejemplo n.º 11
0
    if event == cv2.EVENT_MOUSEMOVE and (len(pts) > 0):
        pt_move = [x,y]
        return        
    return

pts = []
pt_move = [0,0]
print("Select the two points on 2D plane")
cv2.namedWindow("result")
cv2.setMouseCallback("result",getxy)

doc = {}
doc["V"] = list(range(2))
doc["E"] = [[0,1]]
doc["pts"] = [[119, 304],[480, 53]]
doc = graph.Cn(4)
w = 400
h = 400
cx,cy,cz = (w/2,h/2,0)
r = 0.75*w/2
doc = graph.CreateCircleGeometry(doc,cx,cy,cz,r)
doc['_id'] = 1

w = 600
h = 600
gr = racg.Graphics(w=w,h=h)

def PlotGraph(gr,G,color):
    black = [0,0,0]
    for e in G['E']:
        A,B = [G['pts'][v] for v in e]
Ejemplo n.º 12
0
def Circle(r, k):
    G = graph.Cn(k)
    C = [0, 0, 0]
    G = graph.CreateCircleGeometry(G, C[0], C[1], C[2], r)
    return G