Ejemplo n.º 1
0
def fourier(x, L, Fout, K):
    assert K == L.shape[O]
    N, M, Fin = x.get_shape()
    N, M, Fin = int(N), int(M), int(Fin)

    _, U = graph.fourier(L)
    U = tf.constant(U.T, dtype=tf.float32)

    W = _weight_variable([M, Fout, Fin], regularization=False)
    return filter_in_fourier(x, L, Fout, K, U, W)
Ejemplo n.º 2
0
 def fourier(self, x, L, Fout, K):
     assert K == L.shape[
         0]  # artificial but useful to compute number of parameters
     N, M, Fin = x.get_shape()
     N, M, Fin = int(N), int(M), int(Fin)
     # Fourier basis
     _, U = graph.fourier(L)
     U = tf.constant(U.T, dtype=tf.float32)
     # Weights
     W = self._weight_variable([M, Fout, Fin], regularization=False)
     return self.filter_in_fourier(x, L, Fout, K, U, W)
    def coarsening_pooling(self, normalize=True):

        adj = scipy.sparse.csr_matrix(self.adjacency_matrix)
        for i in range(len(self.pooling_sizes)):

            adj_coarsened, pooling_matrices = self._coarserning_pooling_(
                adj, self.pooling_sizes[i], normalize)

            pooling_matrices = np.array(pooling_matrices)

            self.graphs.append(adj_coarsened)
            self.layer2pooling_matrices[i] = pooling_matrices
            adj = scipy.sparse.csr_matrix(adj_coarsened)

        #num_nodes_before_final = adj_coarsened.shape[0]
        #if num_nodes_before_final < 4:
        #num_nodes_before_final = 4
        num_nodes_before_final = 4
        pooling_matrices_final = [
            sp.lil_matrix((adj_coarsened.shape[0], 1))
            for i in range(num_nodes_before_final)
        ]
        if adj_coarsened.shape[0] > 1:
            L_i = graph.laplacian(adj_coarsened, normalize)
            lamb_i, U_i = graph.fourier(L_i)

            for j in range(num_nodes_before_final):
                if j < adj_coarsened.shape[0]:
                    if U_i[0, j] < 0:
                        pooling_matrices_final[j][:, 0] = -U_i[:, j].reshape(
                            -1, 1)
                    else:
                        pooling_matrices_final[j][:,
                                                  0] = U_i[:,
                                                           j].reshape(-1, 1)
                else:
                    if U_i[0, adj_coarsened.shape[0] - 1] < 0:
                        pooling_matrices_final[
                            j][:, 0] = -U_i[:, adj_coarsened.shape[0] -
                                            1].reshape(-1, 1)
                    else:
                        pooling_matrices_final[j][:,
                                                  0] = U_i[:, adj_coarsened.
                                                           shape[0] -
                                                           1].reshape(-1, 1)

        else:
            for j in range(num_nodes_before_final):
                pooling_matrices_final[j][:, 0] = adj_coarsened.reshape(-1, 1)

        self.layer2pooling_matrices[i + 1] = pooling_matrices_final
Ejemplo n.º 4
0
def spline(x, L, Fout, K):
    N, M, Fin = x.get_shape()
    N, M, Fin = int(N), int(M), int(Fin)

    lamb, U = graph.fourier(L)
    U = tf.constant(U.T, dtype=tf.float32)

    B = bspline_basis(K, lamb, degree=3)
    B = tf.constant(B, dtype=tf.float32)

    W = _weight_variable([K, Fout * Fin], regularization=False)
    W = tf.matmul(B, W)
    W = tf.reshape(W, [M, Fout, Fin])
    return filter_in_fourier(x, L, Fout, K, U, W)
Ejemplo n.º 5
0
 def spline(self, x, L, Fout, K):
     N, M, Fin = x.get_shape()
     N, M, Fin = int(N), int(M), int(Fin)
     # Fourier basis
     lamb, U = graph.fourier(L)
     U = tf.constant(U.T, dtype=tf.float32)  # M x M
     # Spline basis
     B = bspline_basis(K, lamb, degree=3)  # M x K
     #B = bspline_basis(K, len(lamb), degree=3)  # M x K
     B = tf.constant(B, dtype=tf.float32)
     # Weights
     W = self._weight_variable([K, Fout * Fin], regularization=False)
     W = tf.matmul(B, W)  # M x Fout*Fin
     W = tf.reshape(W, [M, Fout, Fin])
     return self.filter_in_fourier(x, L, Fout, K, U, W)
Ejemplo n.º 6
0
 def __init__(self, L, F):
     super(fgcnn2, self).__init__()
     #self.L = L  # Graph Laplacian, NFEATURES x NFEATURES
     self.F = F  # Number of filters
     _, self.U = graph.fourier(L)
    def _coarserning_pooling_(self,
                              adjacency_matrix,
                              pooling_size,
                              normalize=False):
        num_nodes = adjacency_matrix[:, 0].shape[0]
        A_dense = adjacency_matrix.todense()
        num_clusters = int(num_nodes / pooling_size)
        if num_clusters == 0:
            num_clusters = num_clusters + 1
        sc = SpectralClustering(n_clusters=num_clusters,
                                affinity='precomputed',
                                n_init=10)
        sc.fit(A_dense)

        clusters = dict()
        for inx, label in enumerate(sc.labels_):
            if label not in clusters:
                clusters[label] = []
            clusters[label].append(inx)
        num_clusters = len(clusters)

        num_nodes_in_largest_clusters = 0
        for label in clusters:
            if len(clusters[label]) >= num_nodes_in_largest_clusters:

                num_nodes_in_largest_clusters = len(clusters[label])
        if num_nodes_in_largest_clusters <= 5:
            num_nodes_in_largest_clusters = 5

        num_nodes_in_largest_clusters = 5

        Adjacencies_per_cluster = [
            adjacency_matrix[clusters[label], :][:, clusters[label]]
            for label in range(len(clusters))
        ]
        ######## Get inter matrix
        A_int = sp.lil_matrix(adjacency_matrix)

        for i in range(len(clusters)):
            zero_list = list(set(range(num_nodes)) - set(clusters[i]))
            for j in clusters[i]:
                A_int[j, zero_list] = 0
                A_int[zero_list, j] = 0

######## Getting adjacenccy matrix wuith only external links
        A_ext = adjacency_matrix - A_int
        ######## Getting cluster vertex indicate matrix

        row_inds = []
        col_inds = []
        data = []

        for i in clusters:
            for j in clusters[i]:
                row_inds.append(j)
                col_inds.append(i)
                data.append(1)

        Omega = sp.coo_matrix((data, (row_inds, col_inds)))
        A_coarsened = np.dot(np.dot(np.transpose(Omega), A_ext), Omega)

        ########## Constructing pooling matrix

        pooling_matrices = [
            sp.lil_matrix((num_nodes, num_clusters))
            for i in range(num_nodes_in_largest_clusters)
        ]

        for i in clusters:
            adj = Adjacencies_per_cluster[i]

            if len(clusters[i]) > 1:
                L_i = graph.laplacian(adj, normalize)
                lamb_i, U_i = graph.fourier(L_i)

                for j in range(num_nodes_in_largest_clusters):
                    if j < len(clusters[i]):
                        if U_i[0, j] < 0:
                            pooling_matrices[j][clusters[i],
                                                i] = -U_i[:, j].reshape(-1, 1)
                        else:
                            pooling_matrices[j][clusters[i],
                                                i] = U_i[:, j].reshape(-1, 1)
                    else:
                        if U_i[0, len(clusters[i]) - 1] < 0:
                            pooling_matrices[j][clusters[i],
                                                i] = -U_i[:,
                                                          len(clusters[i]) -
                                                          1].reshape(-1, 1)
                        else:
                            pooling_matrices[j][clusters[i],
                                                i] = U_i[:,
                                                         len(clusters[i]) -
                                                         1].reshape(-1, 1)
            else:

                for j in range(num_nodes_in_largest_clusters):

                    pooling_matrices[j][clusters[i], i] = adj.reshape(-1, 1)

        return A_coarsened, pooling_matrices
Ejemplo n.º 8
0
#number of subjects
N = 21
#number of matrices per subject (coming from dynamical conn)
per_subj = 20
N = int(N)
per_subj = int(per_subj)

#common A (read it for now)

#A = read_A("/lustre/scratch/wbic-beta/mmc57/hcp_data/sst_rest_data/csv_files/laplacian/A.csv")
fname_ = "/lustre/scratch/wbic-beta/mmc57/hcp_data/sst_rest_data/csv_files/laplacian/dum_Lapl.csv"

#make Laplacian
#L, perm, levs, L_list = make_laplacian(A)
L, perm, levs, L_list = make_laplacian_directory(fname_)
_, U = graph.fourier(L)
U = U.astype(np.float32)
L1 = L_list[1]
L2 = L_list[2]
L3 = L_list[3]

#L = convert_sparse_matrix_to_sparse_tensor(L)
#L1 = convert_sparse_matrix_to_sparse_tensor(L[1])
#L2 = convert_sparse_matrix_to_sparse_tensor(L[2])
#L3 = convert_sparse_matrix_to_sparse_tensor(L[3])

directory1 = "/lustre/scratch/wbic-beta/mmc57/hcp_data/sst_rest_data/csv_files/mat_files3/*.csv"
data = read_mat_stuff_perm(N, per_subj, directory1, perm)
directory2 = "/lustre/scratch/wbic-beta/mmc57/hcp_data/sst_rest_data/csv_files/indices3/label.csv"
input_labels = read_labels(directory2)