Ejemplo n.º 1
0
import graph as G
import randomWalk
import metric as m
filename = "../data/10000x320000.data"
nodes = 2000
graph = G.readGraph(filename)
t = randomWalk.RandomWalk(graph,nodes=nodes)
w=t.getGraph()
print "degreeDist ",m.degreeDist(w)
print "wcc ", m.wccDist(w)
Ejemplo n.º 2
0
import graph as G
import random


def randomNodeNeighbor(graph, nodes=1000):
    nodes = min(nodes, len(G.getEdges(graph)))
    #dataNodes = G.getNodes(getEdges)
    sampleGraph = {}
    sampleNodes = {}
    while True:
        if len(G.getNodes(sampleGraph)) >= nodes:
            break
        randomNode = random.choice(graph.keys())
        sampleGraph[randomNode] = graph[randomNode]

    return sampleGraph


if __name__ == "__main__":
    print "fetching data"
    data = G.readGraph("../data/5000x25000.data")
    print "running randomNodeNeighbor"
    sample = randomNodeNeighbor(data, nodes=2000)
    print "vars: data, sample "
Ejemplo n.º 3
0
import json

path = "../data/smallGraph.data"
#path = "../data/smallGraph.data"
numNodes = 1000

fid = open("../out-final/inDegreeDist-original-graph.out", "w")
fod = open("../out-final/outDegreeDist-original-graph.out", "w")
fwcc = open("../out-final/wccDist-original-graph.out", "w")
fscc = open("../out-final/sccDist-original-graph.out", "w")
fhop = open("../out-final/hopDist-original-graph.out", "w")
fclust = open("../out-final/clustDist-original-graph.out", "w")


print "Reading graph..."
graph = G.readGraph(path)
# print "Generating samples..."
# print "\t* using random edge"
# sampleRE = RE.randomEdge(graph, nodes=numNodes)
# print "\t* using random node"
# sampleRN = RN.sampleRN(graph, nodes=numNodes)
# print "\t* using random node neighbour"
# sampleRNN = RNN.randomNodeNeighbor(graph, nodes=numNodes)
# print "\t* using random walk"
# rw = RW.RandomWalk(graph, nodes=numNodes)
# sampleRW = rw.getGraph()

def getAlgo(num):
	if num == 1:
		return "random edge"
	elif num == 2:
Ejemplo n.º 4
0
from graph import Graph, readGraph
from console import Console
'''
Created on 18 Mar 2019

@author: Marius
'''

#g = readGraph("graph_file2.txt")
#g = readGraph("graph1k.txt")
g = readGraph("graph10k.txt")
c = Console(g)
c.run()
    path.append(d)
    return getOptimumPath(s, finalVD[d][1], path)


def dijkstrasShortestPathAlgo():
    source, destination = raw_input(
        "\nEnter source and destination (source-destination): ").strip().split(
            '-')

    verticesDistances = {}
    for v in graph.graphAdjDict.keys():
        verticesDistances[v] = 99999999

    verticesDistances[source] = 0
    markedVertices.append(source)
    finalVD[source] = [0, None]
    verticesDistances.pop(source)

    findMinDistancesFromSourceToAllVertices(
        source, verticesDistances
    )  #Calculating minimum distances for all vertices from
    #Given source using dijkstras algorithm
    path = getOptimumPath(source, destination, [])
    path.reverse()
    print "Optimum path for", source, "to", destination, "is:", path, "with distance:", finalVD[
        destination][0]


graph.readGraph()
dijkstrasShortestPathAlgo()
Ejemplo n.º 6
0
from graph import MatrGraph, readGraph
from console import Console

'''
Created on 28 May 2019

@author: Marius
'''

g = readGraph("graphHam1.txt")
#g = readGraph("graph1k.txt")
c = Console(g)
c.run()