Ejemplo n.º 1
0
            [pd.Grouper(key='user'),
             pd.Grouper(key='task')]).count()['correct']
    cummulativeResult = practiceResultSum.reset_index().groupby(
        [pd.Grouper(key='user')]).sum()

    # cummulativeResult = practiceResultSum.groupby([pd.Grouper(key='user')]).sum()
    cummulativeResult['cumm_practice'] = cummulativeResult[
        'correct'] / practiceResult.groupby([pd.Grouper(key='user')
                                             ]).count()['date']
    cummulativeResult['successPassedRate'] = cummulativeResult['passed'] / (
        cummulativeResult['passed'] + cummulativeResult['failed'])
    # cummulativeResult = graphLearning.mapNewLabel(cummulativeResult, reLabelIndex)
    cummulativeExerciseWeeks.append(cummulativeResult)

assessment_label = assessment.copy()
assessment_label = graphLearning.mapNewLabel(assessment, reLabelIndex)

assessment_label1A = assessment1A.copy()
assessment_label1A = graphLearning.mapNewLabel(assessment1A, reLabelIndex)
assessment_label2A = assessment2A.copy()
assessment_label2A = graphLearning.mapNewLabel(assessment2A, reLabelIndex)

#activity data matrix construction with newPAgeTYpe
workingWeekLog = []
activityDataMatrixWeeks_pageType = []
for w in range(0, 12):
    print('Week ' + str(w) + '...')
    workingWeekLog.append(weeksEventLog_filtered_pageType[w])
    LogPageactivityCountByUser = pd.concat(
        workingWeekLog)  #weeksEventLog_filtered[w]
    LogPageactivityCountByUser = FCAMiner.activityDataMatrixContruct(
Ejemplo n.º 2
0
            [pd.Grouper(key='user'),
             pd.Grouper(key='task')]).count()['correct']
    cummulativeResult = practiceResultSum.reset_index().groupby(
        [pd.Grouper(key='user')]).sum()

    # cummulativeResult = practiceResultSum.groupby([pd.Grouper(key='user')]).sum()
    cummulativeResult['cumm_practice'] = cummulativeResult[
        'correct'] / practiceResult.groupby([pd.Grouper(key='user')
                                             ]).count()['date']
    cummulativeResult['successPassedRate'] = cummulativeResult['passed'] / (
        cummulativeResult['passed'] + cummulativeResult['failed'])
    # cummulativeResult = graphLearning.mapNewLabel(cummulativeResult, reLabelIndex)
    cummulativeExerciseWeeks.append(cummulativeResult)

assessment_label = assessment.copy()
assessment_label = graphLearning.mapNewLabel(assessment, reLabelIndex)

assessment_label1A = assessment1A.copy()
assessment_label1A = graphLearning.mapNewLabel(assessment1A, reLabelIndex)
assessment_label2A = assessment2A.copy()
assessment_label2A = graphLearning.mapNewLabel(assessment2A, reLabelIndex)

#activity data matrix construction with newPAgeTYpe
workingWeekLog = []
activityDataMatrixWeeks_pageType = []
for w in range(0, 12):
    print('Week ' + str(w) + '...')
    workingWeekLog.append(weeksEventLog_filtered_pageType[w])
    LogPageactivityCountByUser = pd.concat(
        workingWeekLog)  #weeksEventLog_filtered[w]
    LogPageactivityCountByUser = FCAMiner.activityDataMatrixContruct(
Ejemplo n.º 3
0
    elif w in [4,5,6,7]:
        studentList = assessment2A.index.astype(str)     
    else:
        studentList = assessment3A.index.astype(str)
    temp = temp.loc[temp.index.isin(studentList)]
    # temp = graphLearning.mapNewLabel(temp, reLabelIndex)
    # temp = temp.drop(['Practice_0-Practice_0'],axis=1)
    # if w == 1:
    #     temp = temp.drop([8])
    transitionDataMatrixWeeks.append(temp) 
    
for w in range(0,10):
    transitionDataMatrixWeeks[w].index = transitionDataMatrixWeeks[w].index + ['-2020']

for w in range(0,10):    
    transitionDataMatrixWeeks[w] = graphLearning.mapNewLabel(transitionDataMatrixWeeks[w], reLabelIndex)
    
transitionDataMatrixWeeks_directFollow_standardised = []    
for w in range(0,10):
    transitionDataMatrixWeeks_directFollow_standardised.append(dataProcessing.normaliseData(transitionDataMatrixWeeks[w].T))

transitionDataMatrixWeeks_directFollow_normalised = []    
for w in range(0,10):
    transitionDataMatrixWeeks_directFollow_normalised.append(dataProcessing.normaliseData(transitionDataMatrixWeeks[w].T, 'normalised'))

# correlation processing    
corrList = []
corrDistanceList = []
for w in range(0,10):
    corrTemp = transitionDataMatrixWeeks_directFollow_standardised[w].corr()
    corrList.append(corrTemp)
Ejemplo n.º 4
0
    # ca1162018_transitionDataMatrixWeeks[w]['covid'] = 0
    # ca1162019_transitionDataMatrixWeeks[w]['covid'] = 0
    # ca1162020_transitionDataMatrixWeeks[w]['covid'] = 1
    transitionDataMatrixWeeks.append(
        pd.concat([
            ca1162018_transitionDataMatrixWeeks[w],
            ca1162019_transitionDataMatrixWeeks[w],
            ca1162020_transitionDataMatrixWeeks[w]
        ],
                  join='inner'))
    listIndex = listIndex + list(transitionDataMatrixWeeks[w].index)

listIndex = list(set(listIndex))
reLabelIndex = dataProcessing.reLabelStudentId(listIndex)
for w in range(0, 10):
    ca1162018_transitionDataMatrixWeeks[w] = graphLearning.mapNewLabel(
        ca1162018_transitionDataMatrixWeeks[w], reLabelIndex)
    ca1162019_transitionDataMatrixWeeks[w] = graphLearning.mapNewLabel(
        ca1162019_transitionDataMatrixWeeks[w], reLabelIndex)
    ca1162020_transitionDataMatrixWeeks[w] = graphLearning.mapNewLabel(
        ca1162020_transitionDataMatrixWeeks[w], reLabelIndex)
    transitionDataMatrixWeeks[w] = graphLearning.mapNewLabel(
        transitionDataMatrixWeeks[w], reLabelIndex)

transitionDataMatrixWeeks_directFollow_standardised = []
for w in range(0, 10):
    transitionDataMatrixWeeks_directFollow_standardised.append(
        dataProcessing.normaliseData(transitionDataMatrixWeeks[w].T))

ca1162018_activityDataMatrixWeeks_pageTypeWeek = []
ca1162019_activityDataMatrixWeeks_pageTypeWeek = []
ca1162020_activityDataMatrixWeeks_pageTypeWeek = []
Ejemplo n.º 5
0
workingWeekExcercise = []
cummulativeExerciseWeeks = []
for week in range(0,12):  
        
    workingWeekExcercise.append(nonExUploadByWeek[week])
    practiceResult = pd.concat(workingWeekExcercise) #nonExUploadByWeek[week] 

    #adjust number of correct: For each task, number of correct submission/number of submission for that task
    practiceResultSum = practiceResult.groupby([pd.Grouper(key='user'),pd.Grouper(key='task')]).sum()
    practiceResultSum['correct_adjusted'] = practiceResultSum['correct']/practiceResult.groupby([pd.Grouper(key='user'),pd.Grouper(key='task')]).count()['correct']
    cummulativeResult = practiceResultSum.reset_index().groupby([pd.Grouper(key='user')]).sum()
    
    # cummulativeResult = practiceResultSum.groupby([pd.Grouper(key='user')]).sum()
    cummulativeResult['cumm_practice'] = cummulativeResult['correct']/practiceResult.groupby([pd.Grouper(key='user')]).count()['date']
    cummulativeResult['successPassedRate'] = cummulativeResult['passed']/(cummulativeResult['passed'] + cummulativeResult['failed'])
    cummulativeResult = graphLearning.mapNewLabel(cummulativeResult, reLabelIndex)
    cummulativeExerciseWeeks.append(cummulativeResult)

a = cummulativeExerciseWeeks[11].corr()

  
transitionDataMatrixWeeks = []
for w in range(0,12):
    temp = pd.read_csv('transitionMatrixStorage_new/transitionDataMatrixWeeks_distance_accumulated_w' + str(w) + '.csv', index_col=0)
    if w in [0,1,2,3]:
        studentList = assessment1A.index
    elif w in [4,5,6,7]:
        studentList = assessment2A.index     
    else:
        studentList = assessment3A.index
    temp = temp.loc[temp.index.isin(studentList)]
            [pd.Grouper(key='user'),
             pd.Grouper(key='task')]).count()['correct']
    cummulativeResult = practiceResultSum.reset_index().groupby(
        [pd.Grouper(key='user')]).sum()

    # cummulativeResult = practiceResultSum.groupby([pd.Grouper(key='user')]).sum()
    cummulativeResult['cumm_practice'] = cummulativeResult[
        'correct'] / practiceResult.groupby([pd.Grouper(key='user')
                                             ]).count()['date']
    cummulativeResult['successPassedRate'] = cummulativeResult['passed'] / (
        cummulativeResult['passed'] + cummulativeResult['failed'])
    # cummulativeResult = graphLearning.mapNewLabel(cummulativeResult, reLabelIndex)
    cummulativeExerciseWeeks.append(cummulativeResult)

for w in range(0, 12):
    cummulativeExerciseWeeks[w] = graphLearning.mapNewLabel(
        cummulativeExerciseWeeks[w], reLabelIndex)

assessment_label = assessment.copy()
assessment_label = graphLearning.mapNewLabel(assessment, reLabelIndex)

assessment_label1A = assessment1A.copy()
assessment_label1A = graphLearning.mapNewLabel(assessment1A, reLabelIndex)
assessment_label2A = assessment2A.copy()
assessment_label2A = graphLearning.mapNewLabel(assessment2A, reLabelIndex)
assessment_label3A = assessment3A.copy()
assessment_label3A = graphLearning.mapNewLabel(assessment3A, reLabelIndex)

#read csv iff neeeded
transitionDataMatrixWeeks = []
for w in range(0, 12):
    temp = pd.read_csv(