Ejemplo n.º 1
0
    def test_upsampling_matrices(self):
        nodes_enc = [4,16,32,64,256]
        ups = gc.WEI

        # Contiguous nodes
        self.G_params['type_z'] = ds.CONT
        G = ds.create_graph(self.G_params, seed=SEED)
        cluster = gc.MultiResGraphClustering(G, nodes_enc, k=4, up_method=ups)
        out = np.unique(cluster.labels[0])
        for U in cluster.Us:
            out = U.dot(out)
        self.assertTrue(np.array_equal(out,cluster.labels[0]))

        # Alternated nodes
        self.G_params['type_z'] = ds.ALT
        G = ds.create_graph(self.G_params, seed=SEED) 
        cluster = gc.MultiResGraphClustering(G, nodes_enc, k=4, up_method=ups)
        out = np.unique(cluster.labels[0])
        for U in cluster.Us:
            out = U.dot(out)
        self.assertTrue(np.array_equal(out,cluster.labels[0]))

        # Random nodes
        self.G_params['type_z'] = ds.RAND
        G = ds.create_graph(self.G_params, seed=SEED)
        cluster = gc.MultiResGraphClustering(G, nodes_enc, k=4, up_method=ups)
        out = np.unique(cluster.labels[0])
        for U in cluster.Us:
            out = U.dot(out)
        self.assertTrue(np.array_equal(out,cluster.labels[0]))
Ejemplo n.º 2
0
    def test_downsampling_matrices(self):
        nodes_enc = [256,64,32,16,4]
        ups = gc.WEI

        # Contiguous nodes
        self.G_params['type_z'] = ds.CONT
        G = ds.create_graph(self.G_params, seed=SEED)
        cluster = gc.MultiResGraphClustering(G, nodes_enc, k=4, up_method=ups)
        out = np.array(cluster.labels[-1])
        for D in cluster.Ds:
            out = D.dot(out)/np.sum(D,1)
        self.assertTrue(np.array_equal(out, np.unique(cluster.labels[-1])))

        # Alternated nodes
        self.G_params['type_z'] = ds.ALT
        G = ds.create_graph(self.G_params, seed=SEED)
        cluster = gc.MultiResGraphClustering(G, nodes_enc, k=4, up_method=ups)
        out = np.array(cluster.labels[-1])
        for D in cluster.Ds:
            out = D.dot(out)/np.sum(D,1)
        self.assertTrue(np.array_equal(out, np.unique(cluster.labels[-1])))

        # Random nodes
        self.G_params['type_z'] = ds.RAND
        G = ds.create_graph(self.G_params, seed=SEED)
        cluster = gc.MultiResGraphClustering(G, nodes_enc, k=4, up_method=ups)
        out = np.array(cluster.labels[-1])
        for D in cluster.Ds:
            out = D.dot(out)/np.sum(D,1)
        self.assertTrue(np.array_equal(out, np.unique(cluster.labels[-1])))
Ejemplo n.º 3
0
def run(id, Gs, signals, lrn, deltas):
    Gx = ds.create_graph(Gs['params'], seed=SEED)
    Gy = ds.create_graph(Gs['params_y'], seed=SEED)
    data = ds.LinearDS2GS(Gx, Gy, signals['samples'], signals['L'],
                          deltas, median=signals['median'],
                          same_coeffs=signals['same_coeffs'])
    data.to_unit_norm()
    data.add_noise(signals['noise'], test_only=signals['test_only'])
    data.to_tensor()

    epochs = 0
    mean_err = np.zeros(N_EXPS)
    med_err = np.zeros(N_EXPS)
    mse = np.zeros(N_EXPS)
    for i, exp in enumerate(EXPS):
        if exp['type'] == 'Linear':
            model = LinearModel(exp['N'])
        elif exp['type'] == 'Enc_Dec':
            clust_x = gc.MultiResGraphClustering(Gx, exp['n_enc'],
                                                 k=exp['n_enc'][-1],
                                                 up_method=exp['downs'])
            clust_y = gc.MultiResGraphClustering(Gy, exp['n_dec'],
                                                 k=exp['n_enc'][-1],
                                                 up_method=exp['ups'])
            net = GraphEncoderDecoder(exp['f_enc'], clust_x.sizes, clust_x.Ds,
                                      exp['f_dec'], clust_y.sizes, clust_y.Us,
                                      exp['f_conv'], As_dec=clust_y.As,
                                      As_enc=clust_x.As, act_fn=lrn['af'],
                                      last_act_fn=lrn['laf'], ups=exp['ups'],
                                      downs=exp['downs'])
        elif exp['type'] == 'AutoConv':
            net = ConvAutoencoder(exp['f_enc'], exp['kernel_enc'],
                                  exp['f_dec'], exp['kernel_dec'])
        elif exp['type'] == 'AutoFC':
            net = FCAutoencoder(exp['n_enc'], exp['n_dec'], bias=exp['bias'])
        else:
            raise RuntimeError('Unknown experiment type')
        if exp['type'] != 'Linear':
            model = Model(net, learning_rate=lrn['lr'], decay_rate=lrn['dr'],
                          batch_size=lrn['batch'], epochs=lrn['epochs'],
                          eval_freq=EVAL_F, max_non_dec=lrn['non_dec'],
                          verbose=VERBOSE)
        epochs, _, _ = model.fit(data.train_X, data.train_Y, data.val_X, data.val_Y)
        mean_err[i], med_err[i], mse[i] = model.test(data.test_X, data.test_Y)
        print('G: {}, {}-{} ({}): epochs {} - mse {} - MedianErr: {}'
              .format(id, i, exp['type'], model.count_params(), epochs,
                      mse[i], med_err[i]))
    return mean_err, med_err, mse
Ejemplo n.º 4
0
 def setUp(self):
     self.G_params = {}
     self.G_params['type'] = ds.SBM
     self.G_params['N'] = 256
     self.G_params['k'] = 4
     self.G_params['p'] = 0.15
     self.G_params['q'] = 0.01/4
     self.G_params['type_z'] = ds.CONT
     self.G = ds.create_graph(self.G_params, seed=SEED)
Ejemplo n.º 5
0
 def setUp(self):
     np.random.seed(SEED)
     G_params = {}
     G_params['type'] = ds.SBM
     G_params['N']  = 256
     G_params['k']  = 4
     G_params['p'] = 0.15
     G_params['q'] = 0.01/4
     G_params['type_z'] = ds.RAND
     G = ds.create_graph(G_params, seed=SEED)
     nodes_dec = [4,16,32,64,256]
     ups = gc.WEI
     self.N = nodes_dec[-1]
     self.k = nodes_dec[0]
     self.cluster = gc.MultiResGraphClustering(G, nodes_dec, k=4, up_method=ups)
     self.model = Sequential()
     for i,U in enumerate(self.cluster.Us):
         self.add_layer(GraphUpsampling(U, self.cluster.As[i+1],gamma=1))
Ejemplo n.º 6
0
def run(id, Gs, signals, lrn, p_n):
    # Gx, Gy = ds.perturbated_graphs(Gs['params'], Gs['pct_val'][0],
    #                                Gs['pct_val'][1], pct=Gs['pct'],
    #                                seed=SEED)
    Gx = ds.create_graph(Gs['params'], seed=SEED)
Ejemplo n.º 7
0
        {'type': 'AutoConv',
         'f_enc': [1, 1, 1, 1, 1, 2, 2, 2, 2],
         'kernel_enc': 6,
         'f_dec': [2, 2, 1],
         'kernel_dec': 6}]


N_EXPS = len(EXPS)


def run(id, Gs, signals, lrn, p_n):
    # Gx, Gy = ds.perturbated_graphs(Gs['params'], Gs['pct_val'][0],
    #                                Gs['pct_val'][1], pct=Gs['pct'],
    #                                seed=SEED)
    Gx = ds.create_graph(Gs['params'], seed=SEED)
    Gy = ds.create_graph(Gs['params_y'], seed=SEED)
    data = ds.LinearDS2GS(Gx, Gy, signals['samples'], signals['L'],
                          signals['deltas'], median=signals['median'],
                          same_coeffs=signals['same_coeffs'])
    data.to_unit_norm()
    data.add_noise(p_n, test_only=signals['test_only'])
    data.to_tensor()

    epochs = 0
    mean_err = np.zeros(N_EXPS)
    med_err = np.zeros(N_EXPS)
    mse = np.zeros(N_EXPS)
    for i, exp in enumerate(EXPS):
        if exp['type'] == 'Linear':
            model = LinearModel(exp['N'])
        elif exp['type'] == 'Enc_Dec':
Ejemplo n.º 8
0
def run(id, Gs, Signals, lrn, pert):
    if Gs['params']['type'] == ds.SBM:
        Gx, Gy = ds.nodes_perturbated_graphs(Gs['params'],
                                             pert,
                                             seed=SEED,
                                             perm=True)
    elif Gs['params']['type'] == ds.BA:
        Gx = ds.create_graph(Gs['params'], SEED)
        G_params_y = Gs['params'].copy()
        G_params_y['N'] = Gs['params']['N'] - pert
        Gy = ds.create_graph(G_params_y, 2 * SEED)
    else:
        raise RuntimeError("Choose a valid graph type")
    data = ds.LinearDS2GSNodesPert(Gx,
                                   Gy,
                                   Signals['samples'],
                                   Signals['L'],
                                   Signals['deltas'],
                                   median=Signals['median'],
                                   same_coeffs=Signals['same_coeffs'],
                                   neg_coeffs=Signals['neg_coeffs'])
    data.to_unit_norm()
    data.add_noise(Signals['noise'], test_only=Signals['test_only'])
    data.to_tensor()

    epochs = 0
    params = np.zeros(N_EXPS)
    med_err = np.zeros(N_EXPS)
    mse = np.zeros(N_EXPS)
    for i, exp in enumerate(EXPS):
        if exp['type'] == 'Linear':
            model = LinearModel(exp['N'])
        elif exp['type'] == 'Enc_Dec':
            exp['n_dec'][-1] = Gy.N
            clust_x = gc.MultiResGraphClustering(Gx,
                                                 exp['n_enc'],
                                                 k=exp['n_enc'][-1],
                                                 up_method=exp['downs'])
            clust_y = gc.MultiResGraphClustering(Gy,
                                                 exp['n_dec'],
                                                 k=exp['n_enc'][-1],
                                                 up_method=exp['ups'])
            net = GraphEncoderDecoder(exp['f_enc'],
                                      clust_x.sizes,
                                      clust_x.Ds,
                                      exp['f_dec'],
                                      clust_y.sizes,
                                      clust_y.Us,
                                      exp['f_conv'],
                                      As_dec=clust_y.As,
                                      K_dec=exp['K_dec'],
                                      K_enc=exp['K_enc'],
                                      As_enc=clust_x.As,
                                      act_fn=lrn['af'],
                                      last_act_fn=lrn['laf'],
                                      ups=exp['ups'],
                                      downs=exp['downs'])
        elif exp['type'] == 'AutoConv':
            conv = exp['convs'][PERT.index(pert)]
            net = ConvAutoencoder(conv['f_enc'], conv['kernel_enc'],
                                  conv['f_dec'], conv['kernel_dec'])
        elif exp['type'] == 'AutoFC':
            exp['n_dec'][-1] = Gy.N
            net = FCAutoencoder(exp['n_enc'], exp['n_dec'], bias=exp['bias'])
        else:
            raise RuntimeError('Unknown experiment type')
        if exp['type'] != 'Linear':
            model = Model(net,
                          learning_rate=lrn['lr'],
                          decay_rate=lrn['dr'],
                          batch_size=lrn['batch'],
                          epochs=lrn['epochs'],
                          eval_freq=EVAL_F,
                          max_non_dec=lrn['non_dec'],
                          verbose=VERBOSE,
                          early_stop=exp['early_stop'])
        epochs, _, _ = model.fit(data.train_X, data.train_Y, data.val_X,
                                 data.val_Y)
        _, med_err[i], mse[i] = model.test(data.test_X, data.test_Y)
        params[i] = model.count_params()
        print('G: {}, {}-{} ({}): epochs {} - mse {} - MedianErr: {}'.format(
            id, i, exp['type'], params[i], epochs, mse[i], med_err[i]))
    return params, med_err, mse
Ejemplo n.º 9
0
 def test_cluster_sizes_dec(self):
     self.G_params['type_z'] = ds.CONT
     G = ds.create_graph(self.G_params, seed=SEED)