Ejemplo n.º 1
0
def create_image_training_epoch(X_data_tr, Y_data_tr, X_data_val, Y_data_val,
                                tr_loss, val_loss, x_grid, y_grid, cf_a,
                                video_fotograms_folder, epoch_i):
    """
    Creates the image of the training and validation accuracy
    """
    gl.init_figure();
    ax1 = gl.subplot2grid((2,1), (0,0), rowspan=1, colspan=1)
    ax2 = gl.subplot2grid((2,1), (1,0), rowspan=1, colspan=1)
    
    plt.title("Training")
    ## First plot with the data and predictions !!!
    ax1 = gl.scatter(X_data_tr, Y_data_tr, ax = ax1, lw = 3,legend = ["tr points"], labels = ["Analysis of training", "X","Y"])
    gl.scatter(X_data_val, Y_data_val, lw = 3,legend = ["val points"])
    
    gl.plot (x_grid, y_grid, legend = ["Prediction function"])

    gl.set_zoom(xlimPad = [0.2, 0.2], ylimPad = [0.2,0.2], X = X_data_tr, Y = Y_data_tr)
    ## Second plot with the evolution of parameters !!!
    ax2 = gl.plot([], tr_loss, ax = ax2, lw = 3, labels = ["RMSE. lr: %.3f"%cf_a.lr, "epoch","RMSE"], legend = ["train"])
    gl.plot([], val_loss, lw = 3, legend = ["validation"], loc = 3)
    
    
    gl.set_fontSizes(ax = [ax1,ax2], title = 20, xlabel = 20, ylabel = 20, 
                      legend = 20, xticks = 12, yticks = 12)
    
    # Set final properties and save figure
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.30, hspace=0.30)
    
    gl.savefig(video_fotograms_folder +'%i.png'%epoch_i, 
               dpi = 100, sizeInches = [14, 10], close = True, bbox_inches = None)
Ejemplo n.º 2
0
def get_normalized_ll_byCluster_EM(X_train, X_test, y_train, y_test, Ks_params):
    Likelihoods_by_Cluster_train = dp.get_likelihoods_byClusters_EM(X_train, Ks_params)
    Likelihoods_by_Cluster_test = dp.get_likelihoods_byClusters_EM(X_test, Ks_params)
    
    
#    print Likelihoods_by_Cluster_train
    pos_list = np.where(np.array(y_train) == 0)[0]
    neg_list = np.where(np.array(y_train) == 1)[0]
    gl.scatter(Likelihoods_by_Cluster_train[pos_list,0], Likelihoods_by_Cluster_train[pos_list,2])
    gl.scatter(Likelihoods_by_Cluster_train[neg_list,0], Likelihoods_by_Cluster_train[neg_list,2], nf= 0)
    
    #%% Normalize data
    Xtrain = Likelihoods_by_Cluster_train
    Xtest = Likelihoods_by_Cluster_test
    Ytrain = y_train
    Ytest = y_test
    
    Ntrain,Ndim = Xtrain.shape
    Ntest, Ndim = Xtest.shape
    mx = np.mean(Xtrain,axis=0,dtype=np.float64)
    stdx = np.std(Xtrain,axis=0,dtype=np.float64)
    
#    print mx
#    print stdx
    
    Xtrain = np.divide(Xtrain-np.tile(mx,[Ntrain,1]),np.tile(stdx,[Ntrain,1]))
    Xtest = np.divide(Xtest-np.tile(mx,[Ntest,1]),np.tile(stdx,[Ntest,1]))
    
#    print Xtrain
    return Xtrain, Xtest, Ytrain, Ytest
Ejemplo n.º 3
0
def plot_learnt_function(X_data_tr, Y_data_tr, X_data_val, Y_data_val, x_grid,
                         y_grid, cf_a, folder_images):
    gl.init_figure()
    ax1 = gl.scatter(X_data_tr,
                     Y_data_tr,
                     lw=3,
                     legend=["tr points"],
                     labels=["Data", "X", "Y"],
                     alpha=0.2)
    ax2 = gl.scatter(X_data_val,
                     Y_data_val,
                     lw=3,
                     legend=["val points"],
                     alpha=0.2)

    gl.set_fontSizes(ax=[ax1, ax2],
                     title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=20,
                     xticks=12,
                     yticks=12)

    gl.plot(x_grid, y_grid, legend=["training line"])
    gl.savefig(folder_images + 'Training_Example_Data.png',
               dpi=100,
               sizeInches=[14, 4])
Ejemplo n.º 4
0
def plots_weights_layer(mu_W,
                        sigma_W,
                        sigma_b,
                        mu_b,
                        ax1,
                        ax2,
                        legend_layer,
                        plot_pdf=1):
    """
        Plot the given weights of the layer
        """
    # For each of the weights we plot them !!
    color = gl.get_color(None)
    if (plot_pdf):
        for i in range(sigma_W.size):
            x_grid, y_val = bMA.gaussian1D_points(mean=mu_W[i],
                                                  std=sigma_W[i],
                                                  std_K=3)

            gl.plot(
                x_grid,
                y_val,
                ax=ax1,
                fill=1,
                alpha=0.15,
                color=color,
                labels=["Bayesian weights", "", "p(w)"],
                alpha_line=0.15  # ,legend = ["W:%i"%(i+1)]
            )  ###legend = ["M: %.2e, std: %.2e"%(mu_W2[i], sigma_W2[i])])

    gl.scatter(mu_W,
               sigma_W,
               ax=ax2,
               labels=["", r"$\mu_w$", r"$\sigma_w$"],
               color=color,
               legend=legend_layer,
               alpha=0.3)
    if (plot_pdf):
        for i in range(sigma_b.size):
            x_grid, y_val = bMA.gaussian1D_points(mean=mu_b[i],
                                                  std=sigma_b[i],
                                                  std_K=3)
            #            color = gl.get_color(None)
            gl.plot(
                x_grid,
                y_val,
                ax=ax1,
                color=color,
                fill=1,
                alpha=0.3,
                alpha_line=0.15,
                AxesStyle="Normal - No xaxis",
                ls="--"
                #                  ,legend = ["b:%i"%(i+1)]
            )  ###legend = ["M: %.2e, std: %.2e"%(mu_W2[i], sigma_W2[i])])
    gl.scatter(mu_b, sigma_b, ax=ax2, color=color, marker="s", alpha=0.3)
Ejemplo n.º 5
0
def create_image_training_epoch(X_data_tr, Y_data_tr, X_data_val, Y_data_val,
                                tr_loss, val_loss, x_grid, y_grid, cf_a,
                                video_fotograms_folder, epoch_i):
    """
    Creates the image of the training and validation accuracy
    """
    gl.init_figure()
    ax1 = gl.subplot2grid((2, 1), (0, 0), rowspan=1, colspan=1)
    ax2 = gl.subplot2grid((2, 1), (1, 0), rowspan=1, colspan=1)

    plt.title("Training")
    ## First plot with the data and predictions !!!
    ax1 = gl.scatter(X_data_tr,
                     Y_data_tr,
                     ax=ax1,
                     lw=3,
                     legend=["tr points"],
                     labels=["Analysis of training", "X", "Y"])
    gl.scatter(X_data_val, Y_data_val, lw=3, legend=["val points"])

    gl.plot(x_grid, y_grid, legend=["Prediction function"])

    gl.set_zoom(xlimPad=[0.2, 0.2],
                ylimPad=[0.2, 0.2],
                X=X_data_tr,
                Y=Y_data_tr)
    ## Second plot with the evolution of parameters !!!
    ax2 = gl.plot([],
                  tr_loss,
                  ax=ax2,
                  lw=3,
                  labels=["RMSE. lr: %.3f" % cf_a.lr, "epoch", "RMSE"],
                  legend=["train"])
    gl.plot([], val_loss, lw=3, legend=["validation"], loc=3)

    gl.set_fontSizes(ax=[ax1, ax2],
                     title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=20,
                     xticks=12,
                     yticks=12)

    # Set final properties and save figure
    gl.subplots_adjust(left=.09,
                       bottom=.10,
                       right=.90,
                       top=.95,
                       wspace=.30,
                       hspace=0.30)

    gl.savefig(video_fotograms_folder + '%i.png' % epoch_i,
               dpi=100,
               sizeInches=[14, 10],
               close=True,
               bbox_inches=None)
Ejemplo n.º 6
0
def create_plot_variational_weights(model, ax1, ax2, plot_pdf=True):
    """
    This function plots the variational weights in the 2 axes given
    """
    l = 0
    for VBmodel in model.VBmodels:
        l += 1
        if (VBmodel.type_layer == "linear"):
            sigma_W = Vil.softplus(
                VBmodel.rho_weight).detach().cpu().numpy().flatten()
            mu_W = VBmodel.mu_weight.detach().cpu().numpy().flatten()

            sigma_b = Vil.softplus(
                VBmodel.rho_bias).detach().cpu().numpy().flatten()
            mu_b = VBmodel.mu_bias.detach().cpu().numpy().flatten()

            legend_final = ["Layer %i" % (l)]
            plots_weights_layer(mu_W, sigma_W, sigma_b, mu_b, ax1, ax2,
                                legend_final, plot_pdf)

        else:
            sigma_W = Vil.softplus(
                VBmodel.rho_weight_ih).detach().cpu().numpy().flatten()
            mu_W = VBmodel.mu_weight_ih.detach().cpu().numpy().flatten()

            sigma_b = Vil.softplus(
                VBmodel.rho_bias_ih).detach().cpu().numpy().flatten()
            mu_b = VBmodel.mu_bias_ih.detach().cpu().numpy().flatten()

            legend_final = ["LSTM layer ih: %i" % (l)]
            plots_weights_layer(mu_W, sigma_W, sigma_b, mu_b, ax1, ax2,
                                legend_final, plot_pdf)

            # Now the hidden weights
            sigma_W = Vil.softplus(
                VBmodel.rho_weight_hh).detach().cpu().numpy().flatten()
            mu_W = VBmodel.mu_weight_hh.detach().cpu().numpy().flatten()

            sigma_b = Vil.softplus(
                VBmodel.rho_bias_hh).detach().cpu().numpy().flatten()
            mu_b = VBmodel.mu_bias_hh.detach().cpu().numpy().flatten()

            legend_final = ["LSTM layer hh: %i" % (l)]
            plots_weights_layer(mu_W, sigma_W, sigma_b, mu_b, ax1, ax2,
                                legend_final, plot_pdf)

        prior = VBmodel.prior
        gl.colorIndex -= 1
        # So that the color is the same as the weights
        gl.scatter(0,
                   prior.sigma1,
                   lw=3,
                   ax=ax2,
                   legend=["Prior layer %i" % l],
                   marker="x")
Ejemplo n.º 7
0
def scatter_allocations(self,allocations, 
                        labels = ['Porfolios', "Risk (std)", "Return"],
                        legend = ["Portfolios"],
                        lw = 2, alpha = 0.5,
                        nf = 1):
    ## Given a set of allocations, this function
    # plots them into a graph.
    returns, risks = self.compute_allocations(allocations)
    ## Scatter the random portfolios
    gl.scatter(risks, returns,labels = labels, legend = legend, 
            nf = nf, lw = lw, alpha = alpha)
Ejemplo n.º 8
0
def plots_weights_layer(mu_W, sigma_W, mu_b, sigma_b, ax1, title,  
                        legend = ["Weights and biases"],alpha =  0.2):
        """
        Plot the given weights of the layer
        """
        # For each of the weights we plot them !!
        color = gl.get_color(None) 

        gl.scatter( mu_W, sigma_W, ax = ax1, labels = [title,r"$\mu_w$",r"$\sigma_w$"], 
                   color = color, legend = legend, alpha = alpha)
        gl.scatter(mu_b, sigma_b, ax = ax1,  color = color, marker = "s", alpha =alpha)
Ejemplo n.º 9
0
def IFE_a(self, year_start=1996, year_finish=2016, window=10):
    ## Basic, just look at the bloody graphs
    self.pf.set_interval(dt.datetime(year_start, 1, 1),
                         dt.datetime(year_finish, 1, 1))

    dates = self.get_dates()
    prices = self.pf.get_timeSeries(self.period)
    returns = self.get_Returns()
    #    print returns.shape
    gl.plot(
        dates,
        prices,
        labels=["Monthly price of Symbols", "Time (years)", "Price (dolar)"],
        legend=self.pf.symbols.keys(),
        loc=2)
    gl.savefig(folder_images + 'pricesAll.png',
               dpi=150,
               sizeInches=[2 * 8, 1.5 * 6])

    gl.plot(
        dates,
        returns,
        labels=["Monthly return of the Symbols", "Time (years)", "Return (%)"],
        legend=self.pf.symbols.keys())
    gl.savefig(folder_images + 'returnsAll.png',
               dpi=150,
               sizeInches=[2 * 8, 1.5 * 6])

    ## Distribution obtaining
    gl.set_subplots(2, 2)
    for i in range(4):
        gl.histogram(returns[:, i], labels=[self.symbol_names[i]])

    gl.savefig(folder_images + 'returnDistribution.png',
               dpi=150,
               sizeInches=[2 * 8, 1.5 * 6])

    ##############  Posible Transformations ##################

    ws = [3, 4, 6, 8]

    gl.set_subplots(2, 2)
    for w in ws:
        means, ranges = bMl.get_meanRange(prices[:, 1], w)
        gl.scatter(means,
                   ranges,
                   lw=4,
                   labels=["", "mean", "range"],
                   legend=["w = %i" % (w)])

    gl.savefig(folder_images + 'rangeMean.png',
               dpi=150,
               sizeInches=[2 * 8, 1.5 * 6])
Ejemplo n.º 10
0
def plot_learnt_function(X_data_tr, Y_data_tr, X_data_val, Y_data_val,
                          x_grid, y_grid, cf_a,
                          folder_images):
    gl.init_figure()
    ax1 = gl.scatter(X_data_tr, Y_data_tr, lw = 3,legend = ["tr points"], labels = ["Data", "X","Y"], alpha = 0.2)
    ax2 = gl.scatter(X_data_val, Y_data_val, lw = 3,legend = ["val points"], alpha = 0.2)
    
    gl.set_fontSizes(ax = [ax1,ax2], title = 20, xlabel = 20, ylabel = 20, 
                      legend = 20, xticks = 12, yticks = 12)
    
    gl.plot (x_grid, y_grid, legend = ["training line"])
    gl.savefig(folder_images +'Training_Example_Data.png', 
               dpi = 100, sizeInches = [14, 4])
Ejemplo n.º 11
0
def plot_data_regression_1d_2axes(X_data_tr, Y_data_tr, xgrid_real_func, ygrid_real_func, X_data_val, Y_data_val,
                                  x_grid,all_y_grid, most_likely_ygrid,
                                  alpha_points, color_points_train, color_points_val, color_most_likey,color_mean, color_truth,
                                  ax1,ax2):
    """
    This function plots the outputs of the Regression model for the 1D example
    """
    
    ## Compute mean and std of regression
    std_samples_grid = np.std(all_y_grid, axis = 1)
    mean_samples_grid = np.mean(all_y_grid, axis = 1)
    
    ############## ax1: Data + Mostlikely + Real + Mean !! ########################
    if(type(ax1) != type(None)):
        gl.scatter(X_data_tr, Y_data_tr, ax = ax1, lw = 3,  #legend = ["tr points"], 
                   labels = ["Data and predictions", "","Y"], alpha = alpha_points, color = color_points_train)
        gl.scatter(X_data_val, Y_data_val, ax = ax1, lw = 3, #legend = ["val points"], 
                   alpha = alpha_points, color = color_points_val)
        
        gl.plot (xgrid_real_func, ygrid_real_func, ax  = ax1, alpha = 0.90, color = color_truth, legend = ["Truth"])
        gl.plot (x_grid, most_likely_ygrid, ax  = ax1, alpha = 0.90, color = color_most_likey, legend = ["Most likely"])
        gl.plot (x_grid, mean_samples_grid, ax  = ax1, alpha = 0.90, color = color_mean, legend = ["Posterior mean"],
                 AxesStyle = "Normal - No xaxis")
    
    ############## ax2: Data + Realizations of the function !! ######################
    if(type(ax2) != type(None)):
        gl.scatter(X_data_tr, Y_data_tr, ax = ax2, lw = 3,  # legend = ["tr points"], 
                   labels = ["", "X","Y"], alpha = alpha_points, color = color_points_train)
        gl.scatter(X_data_val, Y_data_val, ax = ax2, lw = 3, # legend = ["val points"], 
                   alpha = alpha_points, color = color_points_val)
            
        gl.plot (x_grid, all_y_grid, ax  = ax2, alpha = 0.15, color = "k")
        gl.plot (x_grid, mean_samples_grid, ax  = ax2, alpha = 0.90, color = "b", legend = ["Mean realization"])
        
    gl.set_zoom(xlimPad = [0.2,0.2], ylimPad = [0.2,0.2], ax = ax2, X = X_data_tr, Y = Y_data_tr)
Ejemplo n.º 12
0
def marketTiming(self,returns = [], ind_ret = [], mode = "Treynor-Mazuy"):
    # Investigate if the model is good. 
    # We put a cuatric term of the error.
    
    returns = ul.fnp(returns)
    ind_ret = ul.fnp(ind_ret)
    
    if (returns.size == 0):
        returns = self.get_PortfolioReturn()
    if (ind_ret.size == 0):
        ind_ret = self.get_indexReturns()
    
    # Instead of fitting a line, we fit a parabola, to try to see
    # if we do better than the market return. If when Rm is higher, we have 
    # higher beta, and if when Rm is lower, we have lower beta. So higher
    # and lowr return fitting a curve, cuatric, 

    gl.scatter(ind_ret, returns,
               labels = ["Treynor-Mazuy", "Index Return", "Portfolio Return"],
               legend = ["Returns"])
    
    ## Linear regression:
    Xres =  ind_ret
    coeffs = bMl.get_linearRef(Xres, returns)
    
    Npoints = 10000
    x_grid = np.array(range(Npoints))/float(Npoints)
    x_grid = x_grid*(max(ind_ret) - min(ind_ret)) +  min(ind_ret)
    x_grid = x_grid.reshape(Npoints,1)
    
    x_grid_2 = np.concatenate((np.ones((Npoints,1)),x_grid), axis = 1)
    y_grid = x_grid_2.dot(np.array(coeffs)) 
    
    gl.plot(x_grid, y_grid, legend = ["Linear Regression"], nf = 0)

    
    Xres =  np.concatenate((ind_ret,np.power(ind_ret,2)),axis = 1) 
    coeffs = bMl.get_linearRef(Xres, returns)
    
    x_grid_2 = np.concatenate((np.ones((Npoints,1)),x_grid,np.power(x_grid,2).reshape(Npoints,1) ),axis = 1) 
    y_grid = x_grid_2.dot(np.array(coeffs)) 
    
#    print y_grid.shape
    
    gl.plot(x_grid, y_grid, legend = ["Quadratic Regression"], nf = 0)
    
    print coeffs
    return 1
Ejemplo n.º 13
0
def plot_projections_VAE(model, X_data_tr, ax1):
    """
    This function should plot the PCA mus to 2 Dimensions of the space
    """
    device = model.cf_a.device
    dtype = model.cf_a.dtype

    Xtrain = torch.tensor(X_data_tr, device=device, dtype=dtype)

    model.eval()

    reconstructions, mus, rhos = model.forward(Xtrain)

    ## We have the mus and std of every sample !!
    mus = mus.detach().cpu().numpy()  ## [Nsamples, Dim]
    std = Vil.softplus(rhos).detach().cpu().numpy()

    pca = PCA(n_components=2)
    pca.fit(mus)

    ## PCA projection to 2 Dimensions
    ## TODO, for now we just get the 2 variables
    mus_to_2_dim = pca.transform(mus)  #mus[:,[0,1]]
    stds_to_2_dim = std[:, [0, 1]]

    alpha = 0.2

    target = X_data_tr[:, -1] - X_data_tr[:, 0]

    ###### COLOR #########
    for i in range(X_data_tr.shape[0]):
        if target[i] > 0:
            gl.scatter(mus_to_2_dim[i, 0],
                       mus_to_2_dim[i, 1],
                       legend=[],
                       labels=["Projeciton of points", "var1", "var2"],
                       alpha=alpha,
                       ax=ax1,
                       color="r")
        else:
            gl.scatter(mus_to_2_dim[i, 0],
                       mus_to_2_dim[i, 1],
                       legend=[],
                       labels=["Projeciton of points", "var1", "var2"],
                       alpha=alpha,
                       ax=ax1,
                       color="b")
Ejemplo n.º 14
0
def scatter_deltaDailyMagic(self):
    ## PLOTS DAILY HEIKE ASHI
    ddelta = self.get_timeSeriesbyName("RangeCO")
    hldelta = self.get_timeSeriesbyName("RangeHL")

    mdelta = self.get_magicDelta()
    labels = ["Delta Magic Scatter", "Magic", "Delta"]

    gl.scatter(mdelta, ddelta, labels=labels, legend=[self.symbolID], nf=1)

    #    gl.set_subplots(1,1)
    gl.scatter_3D(mdelta,
                  ddelta,
                  hldelta,
                  labels=labels,
                  legend=[self.symbolID],
                  nf=1)
Ejemplo n.º 15
0
def scatter_deltaDailyMagic(self):
    ## PLOTS DAILY HEIKE ASHI
    ddelta = self.get_timeSeriesbyName("RangeCO")
    hldelta = self.get_timeSeriesbyName("RangeHL")
    
    mdelta = self.get_magicDelta()
    labels = ["Delta Magic Scatter","Magic","Delta"]

    gl.scatter(mdelta,ddelta, 
               labels = labels,
               legend = [self.symbolID],
               nf = 1)
    
#    gl.set_subplots(1,1)
    gl.scatter_3D(mdelta,ddelta, hldelta,
                   labels = labels,
                   legend = [self.symbolID],
                   nf = 1)
Ejemplo n.º 16
0
def scatter_allocations(self,
                        allocations,
                        labels=['Porfolios', "Risk (std)", "Return"],
                        legend=["Portfolios"],
                        lw=2,
                        alpha=0.5,
                        nf=1):
    ## Given a set of allocations, this function
    # plots them into a graph.
    returns, risks = self.compute_allocations(allocations)
    ## Scatter the random portfolios
    gl.scatter(risks,
               returns,
               labels=labels,
               legend=legend,
               nf=nf,
               lw=lw,
               alpha=alpha)
Ejemplo n.º 17
0
def plot_data_classification_2d_2axes(X_data_tr, Y_data_tr, xgrid_real_func, ygrid_real_func, X_data_val, Y_data_val,
                                  xx,yy,all_y_grid, most_likely_ygrid,
                                  alpha_points, color_points_train, color_points_val, color_most_likey,color_mean, color_truth,
                                  ax1,ax2):
    """
    This function plots the outputs of the Classification model for the 2D example
    """
    
    alpha_points = 1
    ## Compute mean and std of regression
    std_samples_grid = np.std(all_y_grid, axis = 1)
    mean_samples_grid = np.mean(all_y_grid, axis = 1)
    
    ############## ax1: Data + Mostlikely + Real + Mean !! ########################
    
    classes = np.unique(Y_data_tr).flatten();
    colors = ["r","g","b"]
    
    for i in range(classes.size):
        X_data_tr_class = X_data_tr[np.where(Y_data_tr == classes[i])[0],:]
        X_data_val_class = X_data_val[np.where(Y_data_val == classes[i])[0],:]
#        print (X_data_tr_class.shape)
#        print (classes)
#        print (X_data_tr)
        if ((X_data_tr_class.size > 0) and (X_data_val_class.size > 0)):
            gl.scatter(X_data_tr_class[:,0].flatten().tolist(), X_data_tr_class[:,1].flatten().tolist(), ax = ax1, lw = 3,  #legend = ["tr points"], 
                       labels = ["Data and predictions", "","Y"], alpha = alpha_points, color = colors[i])
            gl.scatter(X_data_val_class[:,0].flatten(),  X_data_val_class[:,1].flatten(), ax = ax1, lw = 3,color = colors[i], #legend = ["val points"], 
                       alpha = alpha_points, marker = ">")

    out = ax1.contourf(xx, yy, most_likely_ygrid.reshape(xx.shape), cmap=plt.cm.coolwarm, alpha=0.5)
    
#    ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
    
#    gl.plot (xgrid_real_func, ygrid_real_func, ax  = ax1, alpha = 0.90, color = color_truth, legend = ["Truth"])
    for i in range(classes.size):
        X_data_tr_class = X_data_tr[np.where(Y_data_tr == classes[i])[0],:]
        X_data_val_class = X_data_val[np.where(Y_data_val == classes[i])[0],:]
#        print (X_data_tr_class.shape)
#        print (classes)
#        print (X_data_tr)
        if ((X_data_tr_class.size > 0) and (X_data_val_class.size > 0)):
            gl.scatter(X_data_tr_class[:,0].flatten().tolist(), X_data_tr_class[:,1].flatten().tolist(), ax = ax2, lw = 3,  #legend = ["tr points"], 
                       labels = ["", "X","Y"], alpha = alpha_points, color = colors[i])
            gl.scatter(X_data_val_class[:,0].flatten(),  X_data_val_class[:,1].flatten(), ax = ax2, lw = 3,color = colors[i], #legend = ["val points"], 
                       alpha = alpha_points, marker = ">")

    for ygrid in all_y_grid:
       out = ax2.contourf(xx, yy, ygrid.reshape(xx.shape), cmap=plt.cm.coolwarm, alpha=0.5)
    

    ############## ax2: Data + Realizations of the function !! ######################
    
    gl.set_zoom(xlimPad = [0.3,0.3], ylimPad = [0.3,0.3], ax = ax2, X = X_data_tr[:,0], Y = X_data_tr[:,1])
Ejemplo n.º 18
0
def IFE_a(self, year_start = 1996, year_finish = 2016, window = 10):
    ## Basic, just look at the bloody graphs
    self.pf.set_interval(dt.datetime(year_start,1,1),dt.datetime(year_finish,1,1))
    
    dates = self.get_dates()
    prices = self.pf.get_timeSeries(self.period)
    returns = self.get_Returns()
#    print returns.shape
    gl.plot(dates, prices,
            labels = ["Monthly price of Symbols", "Time (years)", "Price (dolar)"],
            legend = self.pf.symbols.keys(), loc = 2)   
    gl.savefig(folder_images +'pricesAll.png',
               dpi = 150, sizeInches = [2*8, 1.5*6])

    gl.plot(dates, returns,
            labels = ["Monthly return of the Symbols", "Time (years)", "Return (%)"],
            legend = self.pf.symbols.keys())   
    gl.savefig(folder_images +'returnsAll.png', 
               dpi = 150, sizeInches = [2*8, 1.5*6])

    ## Distribution obtaining
    gl.set_subplots(2,2)
    for i in range(4):
        gl.histogram(returns[:,i], labels = [self.symbol_names[i]])
    
    gl.savefig(folder_images +'returnDistribution.png',
               dpi = 150, sizeInches = [2*8, 1.5*6])

    ##############  Posible Transformations ##################

    ws = [3, 4, 6, 8]
    
    gl.set_subplots(2,2)
    for w in ws:
        means, ranges = bMl.get_meanRange(prices[:,1], w)
        gl.scatter(means, ranges, lw = 4,
                   labels = ["", "mean","range"],
                   legend = ["w = %i" %(w)])
                   
    gl.savefig(folder_images +'rangeMean.png',
               dpi = 150, sizeInches = [2*8, 1.5*6])
Ejemplo n.º 19
0
def create_plot_variational_weights(model, ax1, ax2, plot_pdf = True):
    """
    This function plots the variational weights in the 2 axes given
    """
    l = 0
    for VBmodel in model.VBmodels:
        l+=1
        if (VBmodel.type_layer == "linear"):
            sigma_W = Vil.softplus(VBmodel.rho_weight).detach().cpu().numpy().flatten()
            mu_W = VBmodel.mu_weight.detach().cpu().numpy().flatten()
            
            sigma_b = Vil.softplus(VBmodel.rho_bias).detach().cpu().numpy().flatten()
            mu_b = VBmodel.mu_bias.detach().cpu().numpy().flatten()
        
            legend_final = ["Layer %i"%(l)]
            plots_weights_layer(mu_W, sigma_W,sigma_b, mu_b, ax1, ax2, legend_final, plot_pdf)
            
        else:
            sigma_W = Vil.softplus(VBmodel.rho_weight_ih).detach().cpu().numpy().flatten()
            mu_W = VBmodel.mu_weight_ih.detach().cpu().numpy().flatten()
            
            sigma_b = Vil.softplus(VBmodel.rho_bias_ih).detach().cpu().numpy().flatten()
            mu_b = VBmodel.mu_bias_ih.detach().cpu().numpy().flatten()
            
            legend_final = ["LSTM layer ih: %i"%(l)]
            plots_weights_layer(mu_W, sigma_W,sigma_b, mu_b, ax1, ax2, legend_final,plot_pdf)
            
            # Now the hidden weights
            sigma_W = Vil.softplus(VBmodel.rho_weight_hh).detach().cpu().numpy().flatten()
            mu_W = VBmodel.mu_weight_hh.detach().cpu().numpy().flatten()
            
            sigma_b = Vil.softplus(VBmodel.rho_bias_hh).detach().cpu().numpy().flatten()
            mu_b = VBmodel.mu_bias_hh.detach().cpu().numpy().flatten()
            
            legend_final = ["LSTM layer hh: %i"%(l)]
            plots_weights_layer(mu_W, sigma_W,sigma_b, mu_b, ax1, ax2, legend_final,plot_pdf)
            
        prior = VBmodel.prior
        gl.colorIndex -= 1; # So that the color is the same as the weights
        gl.scatter(0, prior.sigma1, lw = 3, ax = ax2, legend = ["Prior layer %i"%l], marker = "x")
Ejemplo n.º 20
0
def plots_weights_layer(mu_W,
                        sigma_W,
                        mu_b,
                        sigma_b,
                        ax1,
                        title,
                        legend=["Weights and biases"],
                        alpha=0.2):
    """
        Plot the given weights of the layer
        """
    # For each of the weights we plot them !!
    color = gl.get_color(None)

    gl.scatter(mu_W,
               sigma_W,
               ax=ax1,
               labels=[title, r"$\mu_w$", r"$\sigma_w$"],
               color=color,
               legend=legend,
               alpha=alpha)
    gl.scatter(mu_b, sigma_b, ax=ax1, color=color, marker="s", alpha=alpha)
Ejemplo n.º 21
0
def get_normalized_ll_byCluster_EM(X_train, X_test, y_train, y_test,
                                   Ks_params):
    Likelihoods_by_Cluster_train = dp.get_likelihoods_byClusters_EM(
        X_train, Ks_params)
    Likelihoods_by_Cluster_test = dp.get_likelihoods_byClusters_EM(
        X_test, Ks_params)

    #    print Likelihoods_by_Cluster_train
    pos_list = np.where(np.array(y_train) == 0)[0]
    neg_list = np.where(np.array(y_train) == 1)[0]
    gl.scatter(Likelihoods_by_Cluster_train[pos_list, 0],
               Likelihoods_by_Cluster_train[pos_list, 2])
    gl.scatter(Likelihoods_by_Cluster_train[neg_list, 0],
               Likelihoods_by_Cluster_train[neg_list, 2],
               nf=0)

    #%% Normalize data
    Xtrain = Likelihoods_by_Cluster_train
    Xtest = Likelihoods_by_Cluster_test
    Ytrain = y_train
    Ytest = y_test

    Ntrain, Ndim = Xtrain.shape
    Ntest, Ndim = Xtest.shape
    mx = np.mean(Xtrain, axis=0, dtype=np.float64)
    stdx = np.std(Xtrain, axis=0, dtype=np.float64)

    #    print mx
    #    print stdx

    Xtrain = np.divide(Xtrain - np.tile(mx, [Ntrain, 1]),
                       np.tile(stdx, [Ntrain, 1]))
    Xtest = np.divide(Xtest - np.tile(mx, [Ntest, 1]),
                      np.tile(stdx, [Ntest, 1]))

    #    print Xtrain
    return Xtrain, Xtest, Ytrain, Ytest
Ejemplo n.º 22
0
def plot_VB_weights_mu_std_2D(VBmodel, ax1, type = "LinearVB", title = ""):
    """
    This function plots the variational weights in the 2 axes given
    """
    l = 0
    if (type == "LinearVB"):
        [mu_W, sigma_W, mu_b, sigma_b] = get_LinearVB_weights(VBmodel)
        shape_weights = VBmodel.mu_weight.detach().cpu().numpy().shape
        title +=" " + str(shape_weights)
#        title = ["linear layer: %i"%(l)]
        
        plots_weights_layer(mu_W, sigma_W, mu_b, sigma_b, ax1, title)
        
        prior = VBmodel.prior
        max_mu,min_mu,max_std,min_std,max_abs = get_boundaries_plot(mu_W, sigma_W, mu_b,sigma_b)
        
        gl.scatter(0, prior.sigma1, lw = 3, ax = ax1, legend = ["Prior 1 (%.3f)"%(prior.sigma1)], color = "k", marker = "x",)
        gl.scatter(0, prior.sigma2, lw = 3,ax = ax1, legend = ["Prior 2 (%.3f)"%(prior.sigma2)], color = "b",marker = "x" ) 

        plot_signifant_region(ax1, max_mu,min_mu,max_std,min_std,max_abs)
        gl.set_zoom (ax = ax1, xlimPad = [0.1, 0.1], ylimPad = [0.1,0.1], 
                     X = np.array([min_mu,max_mu]), 
                     Y = np.array([min_std,max_std]) )

    if (type == "HighwayVB"):
        [mu_W, sigma_W, mu_b, sigma_b] = get_LinearVB_weights(VBmodel)
        shape_weights = VBmodel.mu_weight.detach().cpu().numpy().shape
        title +=" " + str(shape_weights)
#        title = ["linear layer: %i"%(l)]
        print(mu_W.shape, mu_b.shape)
#        plots_weights_layer(mu_W[:200,:], sigma_W[:200,:], mu_b[:200], sigma_b[:200], ax1, title + " $G(x)$")
#        plots_weights_layer(mu_W[200:,:], sigma_W[200:,:], mu_b[200:], sigma_b[200:], ax1, title+ " $H(x)$")
      
        plots_weights_layer(mu_W.reshape(shape_weights)[:200,:].flatten(), sigma_W.reshape(shape_weights)[:200,:].flatten(), mu_b[:200], sigma_b[:200], ax1, title, legend = ["Weights and biases G(x)"])
        plots_weights_layer(mu_W.reshape(shape_weights)[200:,:].flatten(), sigma_W.reshape(shape_weights)[200:,:].flatten(), mu_b[200:], sigma_b[200:], ax1, title, legend = ["Weights and biases H(x)"])
        
        prior = VBmodel.prior
        max_mu,min_mu,max_std,min_std,max_abs = get_boundaries_plot(mu_W, sigma_W, mu_b,sigma_b)
        
        gl.scatter(0, prior.sigma1, lw = 3, ax = ax1, legend = ["Prior 1 (%.3f)"%(prior.sigma1)], color = "k", marker = "x",)
        gl.scatter(0, prior.sigma2, lw = 3,ax = ax1, legend = ["Prior 2 (%.3f)"%(prior.sigma2)], color = "b",marker = "x" ) 

        plot_signifant_region(ax1, max_mu,min_mu,max_std,min_std,max_abs)
        gl.set_zoom (ax = ax1, xlimPad = [0.1, 0.1], ylimPad = [0.1,0.1], 
                     X = np.array([min_mu,max_mu]), 
                     Y = np.array([min_std,max_std]) )
Ejemplo n.º 23
0
def plots_weights_layer(mu_W, sigma_W,sigma_b, mu_b, ax1, ax2, legend_layer, plot_pdf = 1):
        """
        Plot the given weights of the layer
        """
        # For each of the weights we plot them !!
        color = gl.get_color(None) 
        if (plot_pdf):
            for i in range(sigma_W.size):
                x_grid, y_val = bMA.gaussian1D_points(mean = mu_W[i], std = sigma_W[i],  std_K = 3)
                
                gl.plot(x_grid, y_val, ax = ax1, fill = 1, alpha = 0.15, color = color,
                        labels = ["Bayesian weights","","p(w)"],alpha_line = 0.15   # ,legend = ["W:%i"%(i+1)]
                        )  ###legend = ["M: %.2e, std: %.2e"%(mu_W2[i], sigma_W2[i])])
            
        gl.scatter( mu_W, sigma_W, ax = ax2, labels = ["",r"$\mu_w$",r"$\sigma_w$"], 
                   color = color, legend = legend_layer, alpha = 0.3)
        if (plot_pdf):
            for i in range(sigma_b.size):
                x_grid, y_val = bMA.gaussian1D_points(mean = mu_b[i], std = sigma_b[i],  std_K = 3)
    #            color = gl.get_color(None)
                gl.plot(x_grid, y_val,  ax = ax1, color = color, fill = 1, alpha = 0.3, alpha_line = 0.15, AxesStyle = "Normal - No xaxis", ls = "--"
        #                  ,legend = ["b:%i"%(i+1)]
                          )  ###legend = ["M: %.2e, std: %.2e"%(mu_W2[i], sigma_W2[i])])
        gl.scatter(mu_b, sigma_b, ax = ax2,  color = color, marker = "s", alpha = 0.3)
Ejemplo n.º 24
0
def plot_corrab(self, symbol, nf = 1):
    # This function plots the returns of a symbol compared
    # to the index, and computes the regresion and correlation parameters.
    
    index = self.Sindex  # The index
    sym_ret = self.pf.symbols[symbol].TDs[self.period].get_timeSeriesReturn()
    ind_ret = self.get_indexReturns()

    # Mean and covariance
    data = np.concatenate((sym_ret,ind_ret),axis = 1)
    means = np.mean(data, axis = 0)
    cov = np.cov(data)
    
    # Regression
    coeffs = bMl.get_linearRef(ind_ret, sym_ret)

    gl.scatter(ind_ret, sym_ret,
               labels = ["Gaussianity study", "Index: " + self.Sindex,symbol],
               legend = ["Returns"],
               nf = nf)
    
    ## Linear regression:
    Xres =  ind_ret
    coeffs = bMl.get_linearRef(Xres, sym_ret)
    
    Npoints = 10000
    x_grid = np.array(range(Npoints))/float(Npoints)
    x_grid = x_grid*(max(ind_ret) - min(ind_ret)) +  min(ind_ret)
    x_grid = x_grid.reshape(Npoints,1)
    
    x_grid_2 = np.concatenate((np.ones((Npoints,1)),x_grid), axis = 1)
    y_grid = x_grid_2.dot(np.array(coeffs)) 
    
    gl.plot(x_grid, y_grid, 
            legend = ["b: %.2f ,a: %.2f" % (coeffs[1], coeffs[0])], 
            nf = 0)
Ejemplo n.º 25
0
def plot_multiple_iterations(Xs,mus,covs, Ks ,myDManager, logl,theta_list,model_theta_list, folder_images):
    ######## Plot the original data #####
    gl.init_figure();
    gl.set_subplots(2,3);
    Ngraph = 6
    
    colors = ["r","b","g"]
    K_G,K_W,K_vMF = Ks
    
    for i in range(Ngraph):
        indx = int(i*((len(theta_list)-1)/float(Ngraph-1)))
        nf = 1
        for xi in range(len( Xs)):
            ## First cluster
            labels = ['EM Evolution. Kg:'+str(K_G)+ ', Kw:' + str(K_W) + ', K_vMF:' + str(K_vMF), "X1","X2"]
            ax1 = gl.scatter(Xs[xi][0,:],Xs[xi][1,:],labels = ["","",""] , 
                              color = colors[xi] ,alpha = 0.2, nf = nf)
            nf =0
            mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = mus[xi], Sigma = covs[xi], Chi2val = 2.4477)
            r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
            gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "--", lw = 2
                     ,AxesStyle = "Normal2", color = colors[xi], alpha = 0.7)
            

        # Only doable if the clusters dont die
        for k_c in myDManager.clusterk_to_Dname.keys():
            k = myDManager.clusterk_to_thetak[k_c]
            distribution_name = myDManager.clusterk_to_Dname[k_c] # G W
            
            if (distribution_name == "Gaussian"):
                ## Plot the ecolution of the mu
                #### Plot the Covariance of the clusters !
                mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = theta_list[indx][k][0], Sigma = theta_list[indx][k][1], Chi2val = 2.4477)
                r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
                gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "-.", lw = 3,
                        AxesStyle = "Normal2",
                       legend = ["Kg(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
            
            elif(distribution_name == "Watson"):
                #### Plot the pdf of the distributino !
                ## Distribution parameters for Watson
                kappa = float(theta_list[indx][k][1])
                mu = theta_list[indx][k][0]
    
                Nsa = 1000
                # Draw 2D samples as transformation of the angle
                Xalpha = np.linspace(0, 2*np.pi, Nsa)
                Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)])
                
                probs = []  # Vector with probabilities
                for i in range(Nsa):
                    probs.append(np.exp(Wad.Watson_pdf_log(Xgrid[:,i],[mu,kappa]) ))
                
                probs = np.array(probs)
                # Plot it in polar coordinates
                X1_w = (1 + probs) * np.cos(Xalpha)
                X2_w = (1 + probs) * np.sin(Xalpha)
                
                gl.plot(X1_w,X2_w, 
                     alpha = 1, lw = 3, ls = "-.",legend = ["Kw(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
                
            elif(distribution_name == "vonMisesFisher"):
                #### Plot the pdf of the distributino !
                ## Distribution parameters for Watson
                kappa = float(theta_list[indx][k][1]); mu = theta_list[indx][k][0]
                Nsa = 1000
                # Draw 2D samples as transformation of the angle
                Xalpha = np.linspace(0, 2*np.pi, Nsa)
                Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)])
                
                probs = []  # Vector with probabilities
                for i in range(Nsa):
                    probs.append(np.exp(vMFd.vonMisesFisher_pdf_log(Xgrid[:,i],[mu,kappa]) ))
                    
                probs = np.array(probs)
                probs = probs.reshape((probs.size,1)).T
                # Plot it in polar coordinates
                X1_w = (1 + probs) * np.cos(Xalpha)
                X2_w = (1 + probs) * np.sin(Xalpha)
                
    #            print X1_w.shape, X2_w.shape
                gl.plot(X1_w,X2_w, 
                     alpha = 1, lw = 3, ls = "-.", legend = ["Kvmf(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
            

        ax1.axis('equal')
    gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.2, hspace=0.01)
    gl.savefig(folder_images +'Final_State2. K_G:'+str(K_G)+ ', K_W:' + str(K_W) + '.png', 
           dpi = 100, sizeInches = [18, 8])
Ejemplo n.º 26
0
def plot_data_classification_2d_2axes(X_data_tr, Y_data_tr, xgrid_real_func,
                                      ygrid_real_func, X_data_val, Y_data_val,
                                      xx, yy, all_y_grid, most_likely_ygrid,
                                      alpha_points, color_points_train,
                                      color_points_val, color_most_likey,
                                      color_mean, color_truth, ax1, ax2):
    """
    This function plots the outputs of the Classification model for the 2D example
    """

    alpha_points = 1
    ## Compute mean and std of regression
    std_samples_grid = np.std(all_y_grid, axis=1)
    mean_samples_grid = np.mean(all_y_grid, axis=1)

    ############## ax1: Data + Mostlikely + Real + Mean !! ########################

    classes = np.unique(Y_data_tr).flatten()
    colors = ["r", "g", "b"]

    for i in range(classes.size):
        X_data_tr_class = X_data_tr[np.where(Y_data_tr == classes[i])[0], :]
        X_data_val_class = X_data_val[np.where(Y_data_val == classes[i])[0], :]
        #        print (X_data_tr_class.shape)
        #        print (classes)
        #        print (X_data_tr)
        if ((X_data_tr_class.size > 0) and (X_data_val_class.size > 0)):
            gl.scatter(
                X_data_tr_class[:, 0].flatten().tolist(),
                X_data_tr_class[:, 1].flatten().tolist(),
                ax=ax1,
                lw=3,  #legend = ["tr points"], 
                labels=["Data and predictions", "", "Y"],
                alpha=alpha_points,
                color=colors[i])
            gl.scatter(
                X_data_val_class[:, 0].flatten(),
                X_data_val_class[:, 1].flatten(),
                ax=ax1,
                lw=3,
                color=colors[i],  #legend = ["val points"], 
                alpha=alpha_points,
                marker=">")

    out = ax1.contourf(xx,
                       yy,
                       most_likely_ygrid.reshape(xx.shape),
                       cmap=plt.cm.coolwarm,
                       alpha=0.5)

    #    ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')

    #    gl.plot (xgrid_real_func, ygrid_real_func, ax  = ax1, alpha = 0.90, color = color_truth, legend = ["Truth"])
    for i in range(classes.size):
        X_data_tr_class = X_data_tr[np.where(Y_data_tr == classes[i])[0], :]
        X_data_val_class = X_data_val[np.where(Y_data_val == classes[i])[0], :]
        #        print (X_data_tr_class.shape)
        #        print (classes)
        #        print (X_data_tr)
        if ((X_data_tr_class.size > 0) and (X_data_val_class.size > 0)):
            gl.scatter(
                X_data_tr_class[:, 0].flatten().tolist(),
                X_data_tr_class[:, 1].flatten().tolist(),
                ax=ax2,
                lw=3,  #legend = ["tr points"], 
                labels=["", "X", "Y"],
                alpha=alpha_points,
                color=colors[i])
            gl.scatter(
                X_data_val_class[:, 0].flatten(),
                X_data_val_class[:, 1].flatten(),
                ax=ax2,
                lw=3,
                color=colors[i],  #legend = ["val points"], 
                alpha=alpha_points,
                marker=">")

    for ygrid in all_y_grid:
        out = ax2.contourf(xx,
                           yy,
                           ygrid.reshape(xx.shape),
                           cmap=plt.cm.coolwarm,
                           alpha=0.5)

    ############## ax2: Data + Realizations of the function !! ######################

    gl.set_zoom(xlimPad=[0.3, 0.3],
                ylimPad=[0.3, 0.3],
                ax=ax2,
                X=X_data_tr[:, 0],
                Y=X_data_tr[:, 1])
Ejemplo n.º 27
0
if plotting_zones:
    plot_flag = 1
    for iCO in range(5):
        subset = df_list[iCO]
        OC = DifferenOC[iCO]
        Ns, Nd = subset.shape
        List_of_points = []
        for i in range(Ns):
            lattitud1 = subset["Latitude(DDD.dddd)"][i]
            longitud1 = subset["Longitude(DDD.dddd)"][i]
            List_of_points.append(get_XYcoordinates(lattitud1, longitud1))

        List_of_points = np.array(List_of_points)
        gl.scatter(List_of_points[:, 0],
                   List_of_points[:, 1],
                   nf=plot_flag,
                   legend=[OC],
                   alpha=0.8)
        plot_flag = 0
#######################################################################
#################################################################v
## "EquipmentOwnership"
## TrackingTimeOrder. If bigger than 0, it is iddle and we can use it
## It also has to be empty OperationalStatus.

#df["TrackingTimeOrder"]

if (spot_hired_analysis):

    ####### Administration sharing !! #####################
    # For a given region, we detect a Spot hired, and we see from the IDLE
Ejemplo n.º 28
0
def IFE_e(self,
          ObjectiveR=0.003,
          Rf=0.0,
          year_start=1996,
          year_finish=2016,
          window=10):
    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then, using also the last year ( test), recalculate the portfolio needed
    # for that return, and the difference between is the turnover
    self.set_Rf(Rf)

    nf_flag = 1
    desired_Portfolios = []
    all_dates = []
    for year_test in range(year_start, year_finish - window + 1):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))

        # Obtain the market line !!
        w = self.TangentPortfolio(Rf=Rf)  # Obtain allocation
        # Obtain the expected return and std when using all our money !
        self.set_allocation(w)
        expRet, stdRet = self.get_metrics(investRf="no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param

        # Once we have the equation of the line, we obtain how much money
        # we need to use to reach the desired Expecred Return.
        # Rt = (1 - X)Rf + XRp with X = sum(w)
        # For a desired Rt we solve the X

        X = (ObjectiveR - Rf) / (expRet - Rf)

        #        print X
        # So the desired porfolio is:
        wdesired = w * X
        desired_Portfolios.append(wdesired)

        gl.plot([0, 1.3 * abs(X * stdRet)],
                [bias, bias + 1.3 * abs(slope * stdRet * X)],
                labels=["Desired Portfolios", "Risk (std)", "Return (%)"],
                legend=["%s, X: %0.3f" % ((year_test + window), X[0])],
                nf=nf_flag,
                loc=2)
        nf_flag = 0
        gl.scatter([abs(X * stdRet)], [ObjectiveR], nf=0)

        dates = self.get_dates()
        all_dates.append(dates[-1])


#        print wdesired

    gl.savefig(folder_images + 'desiredPortfolios.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    # Now we calculate the turnovers
    Turnovers = []
    prev_abs_alloc = []  # Previous, absolute allocation
    percentaje_changed = []
    Nport = len(desired_Portfolios)

    for i in range(Nport - 1):
        to = bMl.get_TurnOver(desired_Portfolios[i], desired_Portfolios[i + 1])
        Turnovers.append(to)
        prev_abs_alloc.append(np.sum(np.abs(desired_Portfolios[i])))
        percentaje_changed.append(Turnovers[-1] / prev_abs_alloc[-1])
        print Turnovers

    gl.set_subplots(1, 3)

    gl.bar(all_dates[1:],
           Turnovers,
           color="g",
           labels=["Portfolio turnovers", "Year", "Value"])

    gl.add_text([all_dates[1:][3], max(Turnovers) * 0.80],
                "Mean: %0.2f" % np.mean(Turnovers), 30)

    gl.bar(all_dates[0:-1],
           prev_abs_alloc,
           color="r",
           labels=["Absolute allocations", "Year", "Value"])

    gl.bar(all_dates[1:],
           percentaje_changed,
           color="b",
           labels=["Percentage turnover", "Year", "Value"])

    gl.add_text(
        [all_dates[1:][3], max(percentaje_changed) * 0.80],
        "Mean: %0.2f" % np.mean(percentaje_changed), 30)

    gl.savefig(folder_images + 'turnovers.png',
               dpi=150,
               sizeInches=[2 * 8, 1 * 6])
Ejemplo n.º 29
0
    mu2 = np.array([[-2], [-2]])
    cov2 = np.array([[1.5, -0.2], [-0.2, 1.5]])

    mu3 = np.array([[3], [-4]])
    cov3 = np.array([[2, -0.8], [-0.8, 2]])

    X1 = np.random.multivariate_normal(mu1.flatten(), cov1, N1).T
    X2 = np.random.multivariate_normal(mu2.flatten(), cov2, N2).T
    X3 = np.random.multivariate_normal(mu3.flatten(), cov3, N3).T

    ######## Plotting #####
    gl.init_figure()
    ## First cluster
    ax1 = gl.scatter(X1[0, :],
                     X1[1, :],
                     labels=["Gaussian Generated Data", "x1", "x2"],
                     legend=["K = 1"],
                     color="r",
                     alpha=0.5)
    mean, w, h, theta = bMA.get_gaussian_ellipse_params(mu=mu1,
                                                        Sigma=cov1,
                                                        Chi2val=2.4477)
    r_ellipse = bMA.get_ellipse_points(mean, w, h, theta)
    gl.plot(r_ellipse[:, 0],
            r_ellipse[:, 1],
            ax=ax1,
            ls="--",
            lw=2,
            AxesStyle="Normal2",
            color="r")

    ## Second cluster
Ejemplo n.º 30
0
tf = 1        # Final time
delta_t = 0.03   # Period of sampling

# Create the t- values
tgrid = np.linspace(t0,tf, int(float(tf-t0)/delta_t))
tgrid = tgrid.reshape(tgrid.size,1)
N = tgrid.size

# Create the signal 
X = mean_function(tgrid, f1 = 1, f2 = 5, a1 = 0.4, a2 = 0.1, 
                      phi2 = 2*np.pi/7, m = 0.1 )


if (plot_mean_signal and plot_flag):
    ## Plot the orginal function
    gl.scatter(tgrid,X, lw = 1, alpha = 0.9, color = "k", nf = 1, 
               labels = ["The true determinist signal mu(t)", "t", "mu(t)" ])
    gl.plot(tgrid,X, lw = 2, color = "k", ls = "--",  legend = ["True signal"])
    gl.set_fontSizes( title = 20, xlabel = 20, ylabel = 20, 
                  legend = 20, xticks = 20, yticks = 20)
    gl.savefig(folder_images +'GP_mean.png', 
               dpi = 100, sizeInches = [2*8, 2*2])
###########################################################################
############### Generate the structural noise #############################
###########################################################################

""" Now we generate the stocastic process that we add to X(t), 
    generating noisy signal Y(t) = X(t) + e(t)
    
    Where we will assume e(t) is Gaussian with mean 0 e(t) \sim N(0,\sigma_t)
    So we have a Gaussian process, since each set of samples forms a jointly
    gaussian distribution. The relation between the noises will be given by the
Ejemplo n.º 31
0
gl.barchart(dates, dataHLOC)

gl.plot(dates, EMAslow, legend=["Slow"], lw=1, color="b")
gl.plot(dates, EMAfast, legend=["fast"], lw=1, color="r", xaxis_mode="hidden")

## Entry Axes
ax2 = gl.plot(dates,
              ul.scale(EMAfast - EMAslow),
              legend=["Difference"],
              nf=1,
              sharex=ax1,
              labels=["", "", "Events"],
              fill=1,
              alpha=0.3)
gl.stem(dates, crosses, legend=["TradeSignal"])
gl.scatter(dates, ul.scale(EMAfast - EMAslow), lw=0.5, alpha=0.5)
gl.plot(dates, np.zeros(crosses.shape))

## Exit  Axes
gl.add_hlines(datesExit,
              all_stops,
              ax=ax1,
              legend=["TrailingStop"],
              alpha=0.8,
              lw=0.2)
ax3 = gl.plot(datesExit,
              ul.scale(-(all_stops - pCheckCross)),
              legend=["TrailingStop"],
              nf=1,
              sharex=ax1,
              labels=["", "", "TrailingStop"],
Ejemplo n.º 32
0
delta_t = 0.03  # Period of sampling

# Create the t- values
tgrid = np.linspace(t0, tf, int(float(tf - t0) / delta_t))
tgrid = tgrid.reshape(tgrid.size, 1)
N = tgrid.size

# Create the signal
X = mean_function(tgrid, f1=1, f2=5, a1=0.4, a2=0.1, phi2=2 * np.pi / 7, m=0.1)

if (plot_mean_signal and plot_flag):
    ## Plot the orginal function
    gl.scatter(tgrid,
               X,
               lw=1,
               alpha=0.9,
               color="k",
               nf=1,
               labels=["The true determinist signal mu(t)", "t", "mu(t)"])
    gl.plot(tgrid, X, lw=2, color="k", ls="--", legend=["True signal"])
    gl.set_fontSizes(title=20,
                     xlabel=20,
                     ylabel=20,
                     legend=20,
                     xticks=20,
                     yticks=20)
    gl.savefig(folder_images + 'GP_mean.png',
               dpi=100,
               sizeInches=[2 * 8, 2 * 2])
###########################################################################
############### Generate the structural noise #############################
    X_1, X_2 = X[:, [i_1]], X[:, [i_2]]
    mu_1, mu_2 = mus[i_1], mus[i_2]

    Xjoint = np.concatenate((X_1, X_2), axis=1).T
    std_1, std_2 = stds[i_1], stds[i_2]

    mu = mus[[i_1, i_2]]
    cov = np.cov(Xjoint)
    std_K = 3

    ## Do stuff now
    ax1 = gl.subplot2grid((1, 2), (0, 0), rowspan=1, colspan=1)
    gl.scatter(Xjoint[0, :],
               Xjoint[1, :],
               alpha=0.5,
               ax=ax1,
               lw=4,
               AxesStyle="Normal",
               labels=["", "U1", "U2"])

    ax1.axis('equal')

    xx, yy, zz = bMA.get_gaussian2D_pdf(xbins=40j,
                                        ybins=40j,
                                        mu=mu,
                                        cov=cov,
                                        std_K=std_K,
                                        x_grid=None)
    ax1.contour(xx,
                yy,
                zz,
Ejemplo n.º 34
0
def IFE_f (self, ObjectiveR = 0.003, Rf = 0.0, year_start = 1996, year_finish = 2016, window = 10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the data.

    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then calculate for the next year, the real return
    # for that portfolio. 
    # Do this for several years as well.
    self.set_Rf(Rf)
    
    nf_flag = 1
    
    All_stds = []
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    for year_test in range(year_start,year_finish - window + 1 - 1): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        
        # Obtain the market line !!
        w = self.TangentPortfolio(Rf = Rf) # Obtain allocation
        self.set_allocation(w)
        # Obtain the expected return and std when using all our money !
        expRet, stdRet = self.get_metrics (investRf = "no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param
        X = (ObjectiveR - Rf)/(expRet - Rf)
        wdesired = w*X

        ## Check that the output of this portfolio is the desired one.
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics()  # Get the expected return for that year
       
#        print ret 
        ## Now that we have the desired w*X, we will calculate the resturn of
        ## the portfolio in the following year.
        # To do so, we set the dates, only to the next year, set the portfolio allocation
        # And calculate the yearly expected return !!

        # Set the dates to only the next year !!
        # Also, one month before in order to get the returns of the first month.
        self.pf.set_interval(dt.datetime(year_test + window,1,1),dt.datetime(year_test + window + 1,1,1))
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics()  # Get the expected return for that year
        PortfolioRet = self.yearly_Return(expRet)  # Get yearly returns
        PortfolioReturns.append(PortfolioRet)
        
        All_stds.append(self.yearly_covMatrix(stdRet))
        
        indexRet = self.get_indexMeanReturn()
        indexRet = self.yearly_Return(indexRet)
        IndexReturns.append(indexRet)
        
#        dates = self.get_dates()
        all_dates.append(year_test + window + 1)
        
        ## Graph with the evolutio of the portfolio price after the assignment
        gl.plot(range(1,13), np.cumsum(self.get_PortfolioReturn()),
                nf = nf_flag, 
                labels = ["Evolution of returns by month", "Months passed", "Cumulative Return"],
                legend = [str(year_test + window +1)])
        nf_flag = 0
#        print ret

    gl.savefig(folder_images +'returnsEvolMonth.png', 
               dpi = 150, sizeInches = [2*8, 2*6])
    
    ## Graph with the desired, the obtained returns and the returns of the index
    gl.bar(all_dates[:], IndexReturns, 
            labels = ["Obtained returns", "Time (years)", "Return (%)"],
            legend = ["Index Return"],
            alpha = 0.8,
            nf = 1)
    gl.bar(all_dates[:], PortfolioReturns, 
           labels = ["Returns of year", "Year","Value"],
            legend = ["Porfolio Return"],
            alpha = 0.8,
            nf = 0)
            
    gl.scatter(all_dates[:], self.yearly_Return(ObjectiveR) * np.ones((len(all_dates[:]),1)), 
            legend = ["Objective Return"],
            nf = 0)

    gl.scatter(all_dates[:], All_stds, 
            legend = ["Std of the portfolio return"],
            nf = 0)
            
    gl.savefig(folder_images +'returnsEvolYears.png', 
               dpi = 150, sizeInches = [2*8, 2*6])

    #### Crazy idea !! Lets plot where the f*****g efficient frontier went 
    nf_flag = 1
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    gl.set_subplots(2,3)
    for year_test in range(year_start,year_start + 6): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        optimal, portfolios = self.efficient_frontier(kind = "Tangent")
        self.plot_allocations(portfolios, labels = ["Evolution of the efficient frontier"],
                              legend = ["Frontier " + str(year_test + window) + " before"], color = "k", nf = 1)
 
        self.pf.set_interval(dt.datetime(year_test + window,1,1),dt.datetime(year_test + window + 1,1,1))
        self.set_allocation(self.TangentPortfolio(Rf = Rf))
        self.plot_allocations(portfolios, legend = ["Frontier " + str(year_test + window) + " after"], color = "r",nf = 0)
        
    gl.savefig(folder_images +'effEvol.png', 
               dpi = 80, sizeInches = [4*8, 3*6])
Ejemplo n.º 35
0
def IFE_e (self, ObjectiveR = 0.003, Rf = 0.0, year_start = 1996, year_finish = 2016, window = 10):
    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then, using also the last year ( test), recalculate the portfolio needed
    # for that return, and the difference between is the turnover
    self.set_Rf(Rf)

    nf_flag = 1
    desired_Portfolios = []
    all_dates = []
    for year_test in range(year_start,year_finish - window + 1): # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test,1,1),dt.datetime(year_test + window,1,1))
        
        # Obtain the market line !!
        w = self.TangentPortfolio(Rf = Rf) # Obtain allocation
        # Obtain the expected return and std when using all our money !
        self.set_allocation(w)
        expRet, stdRet = self.get_metrics (investRf = "no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param
    
        # Once we have the equation of the line, we obtain how much money
        # we need to use to reach the desired Expecred Return.
        # Rt = (1 - X)Rf + XRp with X = sum(w)
        # For a desired Rt we solve the X

        X = (ObjectiveR - Rf)/(expRet - Rf)
        
#        print X
        # So the desired porfolio is:
        wdesired = w*X
        desired_Portfolios.append(wdesired)
        
        gl.plot([0,1.3*abs(X*stdRet)],[bias, bias + 1.3*abs(slope*stdRet*X)],
            labels = ["Desired Portfolios", "Risk (std)", "Return (%)"],
            legend = ["%s, X: %0.3f" %((year_test + window ), X[0])],
            nf = nf_flag, loc = 2)
        nf_flag = 0
        gl.scatter([abs(X*stdRet)],[ObjectiveR],
            nf = 0)


        dates = self.get_dates()
        all_dates.append(dates[-1])
#        print wdesired

    gl.savefig(folder_images +'desiredPortfolios.png', 
               dpi = 150, sizeInches = [2*8, 2*6])

    # Now we calculate the turnovers 
    Turnovers = []
    prev_abs_alloc = []  # Previous, absolute allocation
    percentaje_changed = []
    Nport = len(desired_Portfolios)
    
    for i in range(Nport-1):
        to = bMl.get_TurnOver(desired_Portfolios[i], desired_Portfolios[i+1])
        Turnovers.append(to)
        prev_abs_alloc.append(np.sum(np.abs(desired_Portfolios[i])))
        percentaje_changed.append(Turnovers[-1]/prev_abs_alloc[-1])
        print Turnovers
    
    gl.set_subplots(1,3)
    
    gl.bar(all_dates[1:], Turnovers, color = "g",
           labels = ["Portfolio turnovers", "Year","Value"])
    
    gl.add_text([all_dates[1:][3],max(Turnovers)*0.80], 
                 "Mean: %0.2f" % np.mean(Turnovers), 30)

    gl.bar(all_dates[0:-1], prev_abs_alloc, color = "r",
           labels = ["Absolute allocations", "Year","Value"])
    
    gl.bar(all_dates[1:], percentaje_changed,  color = "b",
           labels = ["Percentage turnover", "Year","Value"])
    
    gl.add_text([all_dates[1:][3],max(percentaje_changed)*0.80], 
                 "Mean: %0.2f" % np.mean(percentaje_changed), 30)

    gl.savefig(folder_images +'turnovers.png', 
               dpi = 150, sizeInches = [2*8, 1*6])
Ejemplo n.º 36
0
def plot_VB_weights_mu_std_2D(VBmodel, ax1, type="LinearVB", title=""):
    """
    This function plots the variational weights in the 2 axes given
    """
    l = 0
    if (type == "LinearVB"):
        [mu_W, sigma_W, mu_b, sigma_b] = get_LinearVB_weights(VBmodel)
        shape_weights = VBmodel.mu_weight.detach().cpu().numpy().shape
        title += " " + str(shape_weights)
        #        title = ["linear layer: %i"%(l)]

        plots_weights_layer(mu_W, sigma_W, mu_b, sigma_b, ax1, title)

        prior = VBmodel.prior
        max_mu, min_mu, max_std, min_std, max_abs = get_boundaries_plot(
            mu_W, sigma_W, mu_b, sigma_b)

        gl.scatter(
            0,
            prior.sigma1,
            lw=3,
            ax=ax1,
            legend=["Prior 1 (%.3f)" % (prior.sigma1)],
            color="k",
            marker="x",
        )
        gl.scatter(0,
                   prior.sigma2,
                   lw=3,
                   ax=ax1,
                   legend=["Prior 2 (%.3f)" % (prior.sigma2)],
                   color="b",
                   marker="x")

        plot_signifant_region(ax1, max_mu, min_mu, max_std, min_std, max_abs)
        gl.set_zoom(ax=ax1,
                    xlimPad=[0.1, 0.1],
                    ylimPad=[0.1, 0.1],
                    X=np.array([min_mu, max_mu]),
                    Y=np.array([min_std, max_std]))

    if (type == "HighwayVB"):
        [mu_W, sigma_W, mu_b, sigma_b] = get_LinearVB_weights(VBmodel)
        shape_weights = VBmodel.mu_weight.detach().cpu().numpy().shape
        title += " " + str(shape_weights)
        #        title = ["linear layer: %i"%(l)]
        print(mu_W.shape, mu_b.shape)
        #        plots_weights_layer(mu_W[:200,:], sigma_W[:200,:], mu_b[:200], sigma_b[:200], ax1, title + " $G(x)$")
        #        plots_weights_layer(mu_W[200:,:], sigma_W[200:,:], mu_b[200:], sigma_b[200:], ax1, title+ " $H(x)$")

        plots_weights_layer(mu_W.reshape(shape_weights)[:200, :].flatten(),
                            sigma_W.reshape(shape_weights)[:200, :].flatten(),
                            mu_b[:200],
                            sigma_b[:200],
                            ax1,
                            title,
                            legend=["Weights and biases G(x)"])
        plots_weights_layer(mu_W.reshape(shape_weights)[200:, :].flatten(),
                            sigma_W.reshape(shape_weights)[200:, :].flatten(),
                            mu_b[200:],
                            sigma_b[200:],
                            ax1,
                            title,
                            legend=["Weights and biases H(x)"])

        prior = VBmodel.prior
        max_mu, min_mu, max_std, min_std, max_abs = get_boundaries_plot(
            mu_W, sigma_W, mu_b, sigma_b)

        gl.scatter(
            0,
            prior.sigma1,
            lw=3,
            ax=ax1,
            legend=["Prior 1 (%.3f)" % (prior.sigma1)],
            color="k",
            marker="x",
        )
        gl.scatter(0,
                   prior.sigma2,
                   lw=3,
                   ax=ax1,
                   legend=["Prior 2 (%.3f)" % (prior.sigma2)],
                   color="b",
                   marker="x")

        plot_signifant_region(ax1, max_mu, min_mu, max_std, min_std, max_abs)
        gl.set_zoom(ax=ax1,
                    xlimPad=[0.1, 0.1],
                    ylimPad=[0.1, 0.1],
                    X=np.array([min_mu, max_mu]),
                    Y=np.array([min_std, max_std]))
Ejemplo n.º 37
0
def generate_images_iterations_ll(Xs,mus,covs, Ks ,myDManager, logl,theta_list,model_theta_list,folder_images_gif):
#    os.remove(folder_images_gif) # Remove previous images if existing
    """
    WARNING: MEANT FOR ONLY 3 Distributions due to the color RGB
    """
    import shutil
    ul.create_folder_if_needed(folder_images_gif)
    shutil.rmtree(folder_images_gif)
    ul.create_folder_if_needed(folder_images_gif)
    ######## Plot the original data #####

    Xdata = np.concatenate(Xs,axis = 1).T
    colors = ["r","b","g"]
    K_G,K_W,K_vMF = Ks
    
    ### FOR EACH ITERATION 
    for i in range(len(theta_list)):  # theta_list
        indx = i
        gl.init_figure()
        ax1 = gl.subplot2grid((1,2), (0,0), rowspan=1, colspan=1)
        
        ## Get the relative ll of the Gaussian denoising cluster.
        ll = myDManager.pdf_log_K(Xdata,theta_list[indx])
        N,K = ll.shape
#        print ll.shape
        for j in range(N):  # For every sample
        #TODO: Can this not be done without a for ?
            # Normalize the probability of the sample being generated by the clusters
            Marginal_xi_probability = gf.sum_logs(ll[j,:])
            ll[j,:] = ll[j,:]- Marginal_xi_probability
        
            ax1 = gl.scatter(Xdata[j,0],Xdata[j,1], labels = ['EM Evolution. Kg:'+str(K_G)+ ', Kw:' + str(K_W) + ', K_vMF:' + str(K_vMF), "X1","X2"], 
                              color = (np.exp(ll[j,1]), np.exp(ll[j,0]), np.exp(ll[j,2])) ,  ###  np.exp(ll[j,2])
                              alpha = 1, nf = 0)
            
        # Only doable if the clusters dont die
        for k_c in myDManager.clusterk_to_Dname.keys():
            k = myDManager.clusterk_to_thetak[k_c]
            distribution_name = myDManager.clusterk_to_Dname[k_c] # G W
            
            if (distribution_name == "Gaussian"):
                ## Plot the ecolution of the mu
                #### Plot the Covariance of the clusters !
                mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = theta_list[indx][k][0], Sigma = theta_list[indx][k][1], Chi2val = 2.4477)
                r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
                gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "-.", lw = 3,
                        AxesStyle = "Normal2",
                       legend = ["Kg(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
            
            elif(distribution_name == "Watson"):
                #### Plot the pdf of the distributino !
                ## Distribution parameters for Watson
                kappa = float(theta_list[indx][k][1]);  mu = theta_list[-1][k][0]
                Nsa = 1000
                # Draw 2D samples as transformation of the angle
                Xalpha = np.linspace(0, 2*np.pi, Nsa)
                Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)])
                
                probs = []  # Vector with probabilities
                for i in range(Nsa):
                    probs.append(np.exp(Wad.Watson_pdf_log(Xgrid[:,i],[mu,kappa]) ))
                
                probs = np.array(probs)
                # Plot it in polar coordinates
                X1_w = (1 + probs) * np.cos(Xalpha)
                X2_w = (1 + probs) * np.sin(Xalpha)
                
                gl.plot(X1_w,X2_w, 
                     alpha = 1, lw = 3, ls = "-.", legend = ["Kw(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
                
            elif(distribution_name == "vonMisesFisher"):
                #### Plot the pdf of the distributino !
                ## Distribution parameters for Watson
                kappa = float(theta_list[indx][k][1]); mu = theta_list[indx][k][0]
                Nsa = 1000
                # Draw 2D samples as transformation of the angle
                Xalpha = np.linspace(0, 2*np.pi, Nsa)
                Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)])
                
                probs = []  # Vector with probabilities
                for i in range(Nsa):
                    probs.append(np.exp(vMFd.vonMisesFisher_pdf_log(Xgrid[:,i],[mu,kappa]) ))
                    
                probs = np.array(probs)
                probs = probs.reshape((probs.size,1)).T
                # Plot it in polar coordinates
                X1_w = (1 + probs) * np.cos(Xalpha)
                X2_w = (1 + probs) * np.sin(Xalpha)
                
    #            print X1_w.shape, X2_w.shape
                gl.plot(X1_w,X2_w, 
                     alpha = 1, lw = 3, ls = "-.", legend = ["Kvmf(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
                
            
        gl.set_zoom(xlim = [-6,6], ylim = [-6,6], ax = ax1)     
        ax2 = gl.subplot2grid((1,2), (0,1), rowspan=1, colspan=1)
        if (indx == 0):
            gl.add_text(positionXY = [0.1,.5], text = r' Initilization Incomplete LogLike: %.2f'%(logl[0]),fontsize = 15)
            pass
        elif (indx >= 1):
           
            gl.plot(range(1,np.array(logl).flatten()[1:].size +1),np.array(logl).flatten()[1:(indx+1)], ax = ax2, 
                    legend = ["Iteration %i, Incom LL: %.2f"%(indx, logl[indx])], labels = ["Convergence of LL with generated data","Iterations","LL"], lw = 2)
            gl.scatter(1, logl[1], lw = 2)
            pt = 0.05
            gl.set_zoom(xlim = [0,len(logl)], ylim = [logl[1] - (logl[-1]-logl[1])*pt,logl[-1] + (logl[-1]-logl[1])*pt], ax = ax2)
            
        gl.subplots_adjust(left=.09, bottom=.10, right=.90, top=.95, wspace=.2, hspace=0.01)
        
        gl.savefig(folder_images_gif +'gif_'+ str(indx) + '.png', 
               dpi = 100, sizeInches = [16, 8], close = "yes",bbox_inches = None)
        
        gl.close("all")
Ejemplo n.º 38
0
        
        spf.print_final_clusters(myDManager, clusters_relation, theta_list[-1], model_theta_list[-1])
        #######################################################################################################################
        #### Plot the evolution of the centroids likelihood ! #####################################################
        #######################################################################################################################
        
        gl.plot(range(1,np.array(logl).flatten()[1:].size +1),np.array(logl).flatten()[1:], 
                legend = ["HMM LogLikelihood"], 
        labels = ["Convergence of LL with generated data","Iterations","LL"], 
        lw = 2)
        gl.savefig(folder_images +'Likelihood_Evolution_' + clusters_relation+ "_"+str(periods[0])+ '.png', 
               dpi = 100, sizeInches = [12, 6])

if (final_clusters_graph):
    gl.init_figure()
    ax1 = gl.scatter(ret1, np.zeros(ret1.size), alpha = 0.2, color = "k",
               legend = ["Data points %i"%(ret1.size)], labels = ["EM algorithm %i Gaussian fits"%(K),"Return",""])
    
    for k in range(len(theta_list[-1])):
        mu_k = theta_list[-1][k][0]
        std_k = theta_list[-1][k][1]
        model_theta_last = model_theta_list[-1]
        
        x_grid, y_values = bMA.gaussian1D_points(mean = float( mu_k), std = float(np.sqrt(std_k)), std_K = 3.5)
        color = gl.get_color()
        
        if (len(model_theta_last) == 1):
            pi = model_theta_last[0]
            gl.plot(x_grid, y_values, color = color, fill = 1, alpha = 0.1,
                    legend = ["Kg(%i), pi:%.2f"%(k+1,pi[0,k])])  
        else:
            pi = model_theta_last[0]
Ejemplo n.º 39
0
def generate_gaussian_data(folder_images, plot_original_data, N1 = 200, N2 = 300, N3 = 50):

    
    mu1 = np.array([[0],[0]])
    cov1 = np.array([[0.8,-1.1],
                     [-1.1,1.6]])
    
    mu2 = np.array([[0],[0]])
    cov2 = np.array([[0.3,0.45],
                     [0.45,0.8]])
    mu3 = np.array([[0],[0]])
    cov3 = np.array([[0.1,0.0],
                     [0.0,0.1]])
    
    X1 = np.random.multivariate_normal(mu1.flatten(), cov1, N1).T
    X2 = np.random.multivariate_normal(mu2.flatten(), cov2, N2).T
    X3 = np.random.multivariate_normal(mu3.flatten(), cov3, N3).T

#    samples_X1 = np.array(range(X1.shape[1]))[np.where([X1[0,:] > 0])[0]]
#    samples_X1 = np.where(X1[0,:] > 0)[0] # np.array(range(X1.shape[1]))
#    print samples_X1
#    X1 = X1[:,samples_X1]
#    X2 = np.concatenate((X2,X3),axis = 1)
    
    ######## Plotting #####
    if (plot_original_data):
        gl.init_figure();
        ## First cluster
        ax1 = gl.scatter(X1[0,:],X1[1,:], labels = ["Gaussian Generated Data", "x1","x2"], 
                         legend = ["K = 1"], color = "r",alpha = 0.5)
        mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = mu1, Sigma = cov1, Chi2val = 2.4477)
        r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
        gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "--", lw = 2
                 ,AxesStyle = "Normal2", color = "r")
        
        ## Second cluster
        ax1 = gl.scatter(X2[0,:],X2[1,:], legend = ["K = 2"], color = "b", alpha = 0.5)
        mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = mu2, Sigma = cov2, Chi2val = 2.4477)
        r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
        gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "--", lw = 2,AxesStyle = "Normal2", color = "b")
        
        ## Third cluster
        ax1 = gl.scatter(X3[0,:],X3[1,:], legend = ["K = 3"], color = "g", alpha = 0.5)
        mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = mu3, Sigma = cov3, Chi2val = 2.4477)
        r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
        gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "--", lw = 2,AxesStyle = "Normal2", color = "g")
        
        ax1.axis('equal')

        gl.savefig(folder_images +'Original data.png', 
               dpi = 100, sizeInches = [12, 6])
    
    ############ ESTIMATE THEM ################
    theta1 = Gae.get_Gaussian_muSigma_ML(X1.T, parameters = dict([["Sigma","full"]]))
    print ("mu1:")
    print (theta1[0])
    print ("Sigma1")
    print(theta1[1])
    
    ############## Estimate Likelihood ###################
    ll = Gad.Gaussian_pdf_log (X1, [mu1,cov1])
    ll2 = []
    for i in range (ll.size):
        ll2.append( multivariate_normal.logpdf(X1[:,i], mean=mu1.flatten(), cov=cov1))
    ll2 = np.array(ll2).reshape(ll.shape)
    
    print ("ll ours")
    print (ll.T)
    print ("ll scipy")
    print (ll2.T)
    print ("Difference in ll")
    print ((ll - ll2).T)
    
    ###### Multiple clusters case
    ll_K = Gad.Gaussian_K_pdf_log(X1, [[mu1,cov1],[mu2,cov2]])
    
    if(0):
        X1 = gf.remove_module(X1.T).T
        X2 = gf.remove_module(X2.T).T
        X3 = gf.remove_module(X3.T).T
    Xdata = np.concatenate((X1,X2,X3), axis =1).T

    return X1,X2,X3,Xdata, mu1,mu2,mu3, cov1,cov2, cov3
mu_Z = mu_Y

## TODO: AS we can see, the angle is actually positive, but when proejcting that is what you lose.
############################################################
################# PLOT DATA ###############################
############################################################


if(distribution_graph):
    # Get the histogram and gaussian estimations !
    ## Scatter plot of the points 
    
    gl.init_figure()
    ax1 = gl.subplot2grid((4,4), (1,0), rowspan=3, colspan=3)
    gl.scatter(Y[0,:],Y[1,:], alpha = 0.5, ax = ax1, lw = 4, AxesStyle = "Normal",
               labels = ["","U1","U2"],
               legend = ["%i points"%Nsam])
    
    # Plot the projection vectors
    n = 6;
    gl.plot([-n*R[0,0],n*R[0,0]],[- n*R[0,1],n*R[0,1]],color = "y", lw = 3);
    gl.plot([-n*R[1,0],n*R[1,0]],[-n*R[1,1],n*R[1,1]],color = "r", lw = 3);
    
    ## Plot the projections !!
#    V1_pr= []
#    V2_pr= []
#    
#    for i in range(Y.shape[1]):
#        V1_pr.append([Y[:,i],Y[:,i]- R[0,:].dot(Y[:,i]) * R[0,:]])
#        V2_pr.append([Y[:,i],Y[:,i] - R[1,:].dot(Y[:,i]) * R[1,:]])
#        
gl.plot(dates, EMAfast, legend=["fast"])

ax2 = gl.plot(dates,
              ul.scale(EMAfast - EMAslow),
              legend=["Difference"],
              nf=1,
              sharex=ax1,
              labels=["", "", "Events"],
              fill=1,
              alpha=0.3)
gl.stem(
    dates,
    crosses,
    legend=["TradeSignal"],
)
gl.scatter(dates, ul.scale(EMAfast - EMAslow), lw=0.5, alpha=0.5)

gl.plot(dates, np.zeros(crosses.shape))
gl.subplots_adjust(left=.09,
                   bottom=.10,
                   right=.90,
                   top=.95,
                   wspace=.10,
                   hspace=0.01)

trade_events = myEstrategia.get_TradeEvents()

# We can observe the apparent delay !

#crosses, dates = Hitler.RobustXingAverages(symbols[0], Ls_list,Ll_list)  #
Ejemplo n.º 42
0
corr = bMA.get_corrMatrix(data)
cov = bMA.get_covMatrix(data)
############################################################
################# PLOT DATA ###############################
############################################################

if(distribution_graph):
    # Get the histogram and gaussian estimations !
    ## Scatter plot of the points 

    n_grids = 40
    kde_K = 3
    gl.init_figure()
    ax1 = gl.subplot2grid((4,4), (1,0), rowspan=3, colspan=3)
    gl.scatter(ret1,ret2, alpha = 0.5, ax = ax1, lw = 4, AxesStyle = "Normal",
               labels = ["",symbolIDs[0], symbolIDs[1]],
               legend = ["%i points"%ret1.size])
    
    ## X distribution
    ax2 = gl.subplot2grid((4,4), (0,0), rowspan=1, colspan=3, sharex = ax1)

    gl.histogram(X = ret1, ax = ax2, AxesStyle = "Normal - No xaxis", 
                 color = "k", alpha = 0.5)
                 
    x_grid = np.linspace(min(ret1),max(ret1),n_grids)
    y_val = bMA.kde_sklearn(ret1, x_grid, bandwidth=np.std(ret1)/kde_K)  
    gl.plot(x_grid, y_val, color = "k",
            labels = ["","",""], legend = ["M: %.2e, std: %.2e"%(mean[0], cov[0,0])])

    x_grid, y_val = bMA.gaussian1D_points(X = ret1, std_K = 3)
    gl.plot(x_grid, y_val, color = "b",
Ejemplo n.º 43
0
def yieldPriceStudy(self, initial_price = 80):
    # The initial price is for the aproximation of the
    # funciton with a cuadratic equation in one point.

    #### Obtain the yield-price curve from the structure    
    Np = 100
    ytm_list = np.linspace(0.001, 0.40, Np)
    
    prices = []
    mdurations = []
    convexities = []
    for ytm in ytm_list:
        price = self.get_price(ytm = ytm)
        mduration = self.get_mduration(price = price)
        convexity = self.get_convexity(price = price)
        
        prices.append(self.get_price(ytm = ytm))
        mdurations.append(mduration)
        convexities.append(convexity)
    
    gl.set_subplots(2,2)
    gl.plot(ytm_list,prices, 
            labels = ["Yield curve", "Yield to maturity" ,"Price of Bond"],
            legend = ["Yield curve"], loc = 3)
    
    gl.plot(ytm_list,prices, 
            labels = ["Duration and Yield", "Yield to maturity" ,"Price of Bond"],
            legend = ["Yield curve"], loc = 3)
    gl.plot(ytm_list,mdurations, na = 1, nf = 0,
            legend = ["Duration"], loc = 1)
    
    gl.plot(ytm_list,prices, 
            labels = ["Convexity and Yield","Yield to maturity" ,"Price of Bond"],
            legend = ["Yield curve"], loc = 3)
    gl.plot(ytm_list,convexities, na = 1, nf = 0,
            legend = ["Convexity"], loc = 1)
            
    ### Estimation of the yield courve around a point using the 
    ## Duration and convexity. 
    
    price = initial_price
    ytm = self.get_ytm(price)
    dytmList = np.linspace(-0.10, 0.10, 100)
    
    ## Obtain estimations
    estimations = []
    for dytm in dytmList:
        eprice = self.estimate_price_DC(price = price, dytm = dytm, dy = 0.01)
        estimations.append(eprice)
    
    ## Obtain real values
    rael_values = []
    for dytm in dytmList:
        rprice = self.get_price(ytm = ytm + dytm)
        rael_values.append(rprice)
    
    # Calculate the error !
    rael_values = ul.fnp(rael_values)
    estimations = ul.fnp(estimations)
    error = np.abs(np.power(rael_values - estimations, 1))
    
    gl.plot(ytm_list,prices, 
            labels = ["Convexity and Yield","Yield to maturity" ,"Price of Bond"],
            legend = ["Yield curve"], loc = 3, lw = 4, color = "r")
    
    gl.scatter([ytm],[price], nf = 0, 
            legend = ["Initial price"], loc = 3, lw = 4, color = "g")
    
    gl.plot(dytmList + ytm,estimations,  nf = 0,
            legend = ["Estimation"], loc = 3, lw = 2, color = "b")
    
    gl.plot(dytmList + ytm,error,  nf = 0, na = 1,
            legend = ["Error"], loc = 1, lw = 2, color = "b")


    ## The limit is the Spot Rate !! When we can do it continuously
    ## In this case the return is e^(RT)
Ejemplo n.º 44
0
    gl.plot(Klusters,
            mean_tr_ll - 2 * std_tr_ll,
            color="k",
            nf=0,
            lw=1,
            ls="--")
    gl.fill_between(Klusters,
                    mean_tr_ll - 2 * std_tr_ll,
                    mean_tr_ll + 2 * std_tr_ll,
                    c="k",
                    alpha=0.5)
    for i in range(len(logl_tr_CVs)):
        for k_i in range(len(Klusters)):
            gl.scatter(np.ones((len(logl_tr_CVs[i][k_i]), 1)) * Klusters[k_i],
                       logl_tr_CVs[i][k_i],
                       color="k",
                       alpha=0.2,
                       lw=1)

    gl.plot(Klusters,
            mean_val_ll,
            nf=0,
            color="r",
            legend=["Mean Validation LL"],
            lw=3)
    gl.plot(Klusters,
            mean_val_ll + 2 * std_val_ll,
            color="r",
            nf=0,
            lw=1,
            ls="--",
Ejemplo n.º 45
0
    keys.sort() 
    set_indexes = days_dict[keys[0]]
    
    gl.set_subplots(2,1)
    ax1 = gl.plot([],[], nf = 1)
    ax2 = gl.plot([],[], nf = 1, sharex = ax1)
    
    for key in keys:
        set_indexes = days_dict[key]
        set_indexes.sort()
        set_indexes = timeData.time_mask[set_indexes] # Since it changed.
        
        times = timeData.get_dates(set_indexes).time
        values = timeData.get_timeSeriesCumReturn(["Close"],set_indexes)
        
        gl.scatter(times, values, ax = ax1)
        volume = timeData.get_timeSeries(["Volume"],set_indexes)
        gl.scatter(times, volume, ax = ax2)

"""
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$ Outdated shit $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
"""

############## OWN BASIC PLOTING FUNC #########################################
if (own_plotting_func_f):
    # There is a small set of functions to plot the time series and some more
    # complex stuff but it is very underdeveloped and it is better to use the graph library
    price = timeData.get_timeSeries(["RangeHL","RangeCO"]);
    timeData.plot_timeSeries(nf = 1)
def yieldPriceStudy(self, initial_price=80):
    # The initial price is for the aproximation of the
    # funciton with a cuadratic equation in one point.

    #### Obtain the yield-price curve from the structure
    Np = 100
    ytm_list = np.linspace(0.001, 0.40, Np)

    prices = []
    mdurations = []
    convexities = []
    for ytm in ytm_list:
        price = self.get_price(ytm=ytm)
        mduration = self.get_mduration(price=price)
        convexity = self.get_convexity(price=price)

        prices.append(self.get_price(ytm=ytm))
        mdurations.append(mduration)
        convexities.append(convexity)

    gl.set_subplots(2, 2)
    gl.plot(ytm_list,
            prices,
            labels=["Yield curve", "Yield to maturity", "Price of Bond"],
            legend=["Yield curve"],
            loc=3)

    gl.plot(
        ytm_list,
        prices,
        labels=["Duration and Yield", "Yield to maturity", "Price of Bond"],
        legend=["Yield curve"],
        loc=3)
    gl.plot(ytm_list, mdurations, na=1, nf=0, legend=["Duration"], loc=1)

    gl.plot(
        ytm_list,
        prices,
        labels=["Convexity and Yield", "Yield to maturity", "Price of Bond"],
        legend=["Yield curve"],
        loc=3)
    gl.plot(ytm_list, convexities, na=1, nf=0, legend=["Convexity"], loc=1)

    ### Estimation of the yield courve around a point using the
    ## Duration and convexity.

    price = initial_price
    ytm = self.get_ytm(price)
    dytmList = np.linspace(-0.10, 0.10, 100)

    ## Obtain estimations
    estimations = []
    for dytm in dytmList:
        eprice = self.estimate_price_DC(price=price, dytm=dytm, dy=0.01)
        estimations.append(eprice)

    ## Obtain real values
    rael_values = []
    for dytm in dytmList:
        rprice = self.get_price(ytm=ytm + dytm)
        rael_values.append(rprice)

    # Calculate the error !
    rael_values = ul.fnp(rael_values)
    estimations = ul.fnp(estimations)
    error = np.abs(np.power(rael_values - estimations, 1))

    gl.plot(
        ytm_list,
        prices,
        labels=["Convexity and Yield", "Yield to maturity", "Price of Bond"],
        legend=["Yield curve"],
        loc=3,
        lw=4,
        color="r")

    gl.scatter([ytm], [price],
               nf=0,
               legend=["Initial price"],
               loc=3,
               lw=4,
               color="g")

    gl.plot(dytmList + ytm,
            estimations,
            nf=0,
            legend=["Estimation"],
            loc=3,
            lw=2,
            color="b")

    gl.plot(dytmList + ytm,
            error,
            nf=0,
            na=1,
            legend=["Error"],
            loc=1,
            lw=2,
            color="b")
Ejemplo n.º 47
0
def IFE_f(self,
          ObjectiveR=0.003,
          Rf=0.0,
          year_start=1996,
          year_finish=2016,
          window=10):
    ### The official one can be done executing the exercise c with another Rf
    ## Just another graph to show that now we should not use all the data.

    # Just, choose a desired return,
    # Using training Samples calculate using the market line
    # the optimal porfolio for that.
    # Then calculate for the next year, the real return
    # for that portfolio.
    # Do this for several years as well.
    self.set_Rf(Rf)

    nf_flag = 1

    All_stds = []
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    for year_test in range(year_start, year_finish - window + 1 - 1):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))

        # Obtain the market line !!
        w = self.TangentPortfolio(Rf=Rf)  # Obtain allocation
        self.set_allocation(w)
        # Obtain the expected return and std when using all our money !
        expRet, stdRet = self.get_metrics(investRf="no")
        param = bMl.obtain_equation_line(Rf, expRet, stdRet)
        bias, slope = param
        X = (ObjectiveR - Rf) / (expRet - Rf)
        wdesired = w * X

        ## Check that the output of this portfolio is the desired one.
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics(
        )  # Get the expected return for that year

        #        print ret
        ## Now that we have the desired w*X, we will calculate the resturn of
        ## the portfolio in the following year.
        # To do so, we set the dates, only to the next year, set the portfolio allocation
        # And calculate the yearly expected return !!

        # Set the dates to only the next year !!
        # Also, one month before in order to get the returns of the first month.
        self.pf.set_interval(dt.datetime(year_test + window, 1, 1),
                             dt.datetime(year_test + window + 1, 1, 1))
        self.set_allocation(wdesired)  # Set the allocation
        expRet, stdRet = self.get_metrics(
        )  # Get the expected return for that year
        PortfolioRet = self.yearly_Return(expRet)  # Get yearly returns
        PortfolioReturns.append(PortfolioRet)

        All_stds.append(self.yearly_covMatrix(stdRet))

        indexRet = self.get_indexMeanReturn()
        indexRet = self.yearly_Return(indexRet)
        IndexReturns.append(indexRet)

        #        dates = self.get_dates()
        all_dates.append(year_test + window + 1)

        ## Graph with the evolutio of the portfolio price after the assignment
        gl.plot(range(1, 13),
                np.cumsum(self.get_PortfolioReturn()),
                nf=nf_flag,
                labels=[
                    "Evolution of returns by month", "Months passed",
                    "Cumulative Return"
                ],
                legend=[str(year_test + window + 1)])
        nf_flag = 0


#        print ret

    gl.savefig(folder_images + 'returnsEvolMonth.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    ## Graph with the desired, the obtained returns and the returns of the index
    gl.bar(all_dates[:],
           IndexReturns,
           labels=["Obtained returns", "Time (years)", "Return (%)"],
           legend=["Index Return"],
           alpha=0.8,
           nf=1)
    gl.bar(all_dates[:],
           PortfolioReturns,
           labels=["Returns of year", "Year", "Value"],
           legend=["Porfolio Return"],
           alpha=0.8,
           nf=0)

    gl.scatter(all_dates[:],
               self.yearly_Return(ObjectiveR) * np.ones(
                   (len(all_dates[:]), 1)),
               legend=["Objective Return"],
               nf=0)

    gl.scatter(all_dates[:],
               All_stds,
               legend=["Std of the portfolio return"],
               nf=0)

    gl.savefig(folder_images + 'returnsEvolYears.png',
               dpi=150,
               sizeInches=[2 * 8, 2 * 6])

    #### Crazy idea !! Lets plot where the f*****g efficient frontier went
    nf_flag = 1
    PortfolioReturns = []
    IndexReturns = []
    all_dates = []
    gl.set_subplots(2, 3)
    for year_test in range(year_start, year_start + 6):  # +1 !!
        # Set the dates
        self.pf.set_interval(dt.datetime(year_test, 1, 1),
                             dt.datetime(year_test + window, 1, 1))
        optimal, portfolios = self.efficient_frontier(kind="Tangent")
        self.plot_allocations(
            portfolios,
            labels=["Evolution of the efficient frontier"],
            legend=["Frontier " + str(year_test + window) + " before"],
            color="k",
            nf=1)

        self.pf.set_interval(dt.datetime(year_test + window, 1, 1),
                             dt.datetime(year_test + window + 1, 1, 1))
        self.set_allocation(self.TangentPortfolio(Rf=Rf))
        self.plot_allocations(
            portfolios,
            legend=["Frontier " + str(year_test + window) + " after"],
            color="r",
            nf=0)

    gl.savefig(folder_images + 'effEvol.png',
               dpi=80,
               sizeInches=[4 * 8, 3 * 6])
Ejemplo n.º 48
0
X = np.concatenate((X),axis = 1)
Nsim = 1000
x_grid = np.linspace(-6,8,Nsim)

if(distribution_graph):
    ## Plot the 3 distributions ! 
    gl.init_figure()
    for i in range(Nx):
        
        X_i = X[:,[i]]
        x_grid, y_values = bMA.gaussian1D_points(mean = mus[i], std = stds[i],
        x_grid = x_grid)
        
        color = gl.get_color()
        gl.scatter(X_i, np.zeros(X_i.shape), alpha = 0.1, lw = 4, AxesStyle = "Normal",
                   color = color, labels = ["3 independent Gaussian distributions","x","pdf(x)"])
                   
        gl.plot(x_grid, y_values, color = color, fill = 1, alpha = 0.1,
                legend = ["X%i: m:%.1f, std:%.1f"%(i+1,mus[i],stds[i])])  
        
        
        gl.savefig(folder_images +'Gaussians.png', 
           dpi = 100, sizeInches = [18, 10])
           
############################################################
################# PLOT DATA ###############################
############################################################

if(distribution_graph_2D):
    # Get the histogram and gaussian estimations !
    ## Scatter plot of the points 
Ejemplo n.º 49
0
def plot_data_regression_1d_2axes(X_data_tr, Y_data_tr, xgrid_real_func,
                                  ygrid_real_func, X_data_val, Y_data_val,
                                  x_grid, all_y_grid, most_likely_ygrid,
                                  alpha_points, color_points_train,
                                  color_points_val, color_most_likey,
                                  color_mean, color_truth, ax1, ax2):
    """
    This function plots the outputs of the Regression model for the 1D example
    """

    ## Compute mean and std of regression
    std_samples_grid = np.std(all_y_grid, axis=1)
    mean_samples_grid = np.mean(all_y_grid, axis=1)

    ############## ax1: Data + Mostlikely + Real + Mean !! ########################
    if (type(ax1) != type(None)):
        gl.scatter(
            X_data_tr,
            Y_data_tr,
            ax=ax1,
            lw=3,  #legend = ["tr points"], 
            labels=["Data and predictions", "", "Y"],
            alpha=alpha_points,
            color=color_points_train)
        gl.scatter(
            X_data_val,
            Y_data_val,
            ax=ax1,
            lw=3,  #legend = ["val points"], 
            alpha=alpha_points,
            color=color_points_val)

        gl.plot(xgrid_real_func,
                ygrid_real_func,
                ax=ax1,
                alpha=0.90,
                color=color_truth,
                legend=["Truth"])
        gl.plot(x_grid,
                most_likely_ygrid,
                ax=ax1,
                alpha=0.90,
                color=color_most_likey,
                legend=["Most likely"])
        gl.plot(x_grid,
                mean_samples_grid,
                ax=ax1,
                alpha=0.90,
                color=color_mean,
                legend=["Posterior mean"],
                AxesStyle="Normal - No xaxis")

    ############## ax2: Data + Realizations of the function !! ######################
    if (type(ax2) != type(None)):
        gl.scatter(
            X_data_tr,
            Y_data_tr,
            ax=ax2,
            lw=3,  # legend = ["tr points"], 
            labels=["", "X", "Y"],
            alpha=alpha_points,
            color=color_points_train)
        gl.scatter(
            X_data_val,
            Y_data_val,
            ax=ax2,
            lw=3,  # legend = ["val points"], 
            alpha=alpha_points,
            color=color_points_val)

        gl.plot(x_grid, all_y_grid, ax=ax2, alpha=0.15, color="k")
        gl.plot(x_grid,
                mean_samples_grid,
                ax=ax2,
                alpha=0.90,
                color="b",
                legend=["Mean realization"])

    gl.set_zoom(xlimPad=[0.2, 0.2],
                ylimPad=[0.2, 0.2],
                ax=ax2,
                X=X_data_tr,
                Y=Y_data_tr)
            nbins = None
            min_value_x = None

        gl.init_figure()
        ax1 = gl.subplot2grid((1, 2), (0, 0), rowspan=1, colspan=1)
        ax2 = gl.subplot2grid((1, 2), (0, 1), rowspan=1, colspan=1, sharex=ax1)

        y_values = np.array(DataSet_statistics["start_span_loss"]) + np.array(
            DataSet_statistics["end_span_loss"])

        y_EM_values = np.array(DataSet_statistics["em"])
        y_F1_values = np.array(DataSet_statistics["f1"])

        ax1 = gl.scatter(x_values,
                         y_values,
                         ax=ax1,
                         labels=labels_1,
                         alpha=0.1)
        spl.distplot_1D_seaborn(x_values,
                                ax2,
                                labels=[
                                    'Distribution of ' + labels_1[0],
                                    labels_1[1], 'pdf(' + labels_1[1] + ")"
                                ])
        gl.set_fontSizes(ax=[ax1, ax2],
                         title=20,
                         xlabel=15,
                         ylabel=18,
                         legend=10,
                         xticks=15,
                         yticks=15)
Ejemplo n.º 51
0
    x_grid_emp, y_val_emp = bMA.empirical_1D_cdf(ret1)

    x_grid = np.linspace(x_grid_emp[0], x_grid_emp[-1], 100)
    x_grid, y_val = bMA.gaussian1D_points_cdf(X=ret1, x_grid=x_grid)

    ax1 = gl.plot(X=x_grid,
                  Y=y_val,
                  AxesStyle="Normal",
                  nf=1,
                  color="k",
                  alpha=0.5)

    gl.scatter(x_grid_emp,
               y_val_emp,
               color="k",
               labels=["", "", ""],
               legend=["empirical cdf"])

    ## Now here we just plot it one againts each other like in a regression
    ## problem !

    #    ax2 = gl.plot(X = y_val_emp, Y = y_val, AxesStyle = "Normal", nf = 1,
    #                 color = "k", alpha = 0.5)
    x_grid, y_val = bMA.gaussian1D_points_cdf(X=ret1, x_grid=x_grid_emp)
    gl.scatter(X=y_val_emp,
               Y=y_val,
               color="k",
               labels=["", "", ""],
               legend=["empirical cdf"],
               nf=1)
Ejemplo n.º 52
0
def plot_final_distribution(Xs,mus,covs, Ks ,myDManager, logl,theta_list,model_theta_list, folder_images):

    colors = ["r","b","g"]
    K_G,K_W,K_vMF = Ks
    ################## Print the Watson and Gaussian Distribution parameters ###################
    for k_c in myDManager.clusterk_to_Dname.keys():
        k = myDManager.clusterk_to_thetak[k_c]
        distribution_name = myDManager.clusterk_to_Dname[k_c] # G W
        if (distribution_name == "Gaussian"):
            print ("------------ Gaussian Cluster. K = %i--------------------"%k)
            print ("mu")
            print (theta_list[-1][k][0])
            print ("Sigma")
            print (theta_list[-1][k][1])
        elif(distribution_name == "Watson"):
            print ("------------ Watson Cluster. K = %i--------------------"%k)
            print ("mu")
            print (theta_list[-1][k][0])
            print ("Kappa")
            print (theta_list[-1][k][1])
        elif(distribution_name == "vonMisesFisher"):
            print ("------------ vonMisesFisher Cluster. K = %i--------------------"%k)
            print ("mu")
            print (theta_list[-1][k][0])
            print ("Kappa")
            print (theta_list[-1][k][1])
    print ("pimix")
    print (model_theta_list[-1])
    
    mus_Watson_Gaussian = []
    # k_c is the number of the cluster inside the Manager. k is the index in theta
    for k_c in myDManager.clusterk_to_Dname.keys():
        k = myDManager.clusterk_to_thetak[k_c]
        distribution_name = myDManager.clusterk_to_Dname[k_c] # G W
        mus_k = []
        for iter_i in range(len(theta_list)): # For each iteration of the algorihtm
            if (distribution_name == "Gaussian"):
                theta_i = theta_list[iter_i][k]
                mus_k.append(theta_i[0])
            elif(distribution_name == "Watson"):
                theta_i = theta_list[iter_i][k]
                mus_k.append(theta_i[0])
            elif(distribution_name == "vonMisesFisher"):
                theta_i = theta_list[iter_i][k]
                mus_k.append(theta_i[0])
                
        mus_k = np.concatenate(mus_k, axis = 1).T
        mus_Watson_Gaussian.append(mus_k)
    

    
    ######## Plot the original data #####
    gl.init_figure();
    ## First cluster
    for xi in range(len( Xs)):
        ## First cluster
        ax1 = gl.scatter(Xs[xi][0,:],Xs[xi][1,:], labels = ['EM Evolution. Kg:'+str(K_G)+ ', Kw:' + str(K_W) + ', K_vMF:' + str(K_vMF), "X1","X2"], 
                          color = colors[xi] ,alpha = 0.2, nf = 0)
        mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = mus[xi], Sigma = covs[xi], Chi2val = 2.4477)
        r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
        gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "--", lw = 2
                 ,AxesStyle = "Normal2", color = colors[xi], alpha = 0.7)

    indx = -1
    # Only doable if the clusters dont die
    Nit,Ndim = mus_Watson_Gaussian[0].shape
    for k_c in myDManager.clusterk_to_Dname.keys():
        k = myDManager.clusterk_to_thetak[k_c]
        distribution_name = myDManager.clusterk_to_Dname[k_c] # G W
        
        if (distribution_name == "Gaussian"):
            ## Plot the ecolution of the mu
            #### Plot the Covariance of the clusters !
            mean,w,h,theta = bMA.get_gaussian_ellipse_params( mu = theta_list[indx][k][0], Sigma = theta_list[indx][k][1], Chi2val = 2.4477)
            r_ellipse = bMA.get_ellipse_points(mean,w,h,theta)
            gl.plot(r_ellipse[:,0], r_ellipse[:,1], ax = ax1, ls = "-.", lw = 3,
                    AxesStyle = "Normal2", 
                    legend = ["Kg(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 


            gl.scatter(mus_Watson_Gaussian[k][:,0], mus_Watson_Gaussian[k][:,1], nf = 0, na = 0, alpha = 0.3, lw = 1,
                          color = "y")
            gl.plot(mus_Watson_Gaussian[k][:,0], mus_Watson_Gaussian[k][:,1], nf = 0, na = 0, alpha = 0.8, lw = 2,
                          color = "y")
        
        elif(distribution_name == "Watson"):
            #### Plot the pdf of the distributino !
            ## Distribution parameters for Watson
            kappa = float(theta_list[indx][k][1])
            mu = theta_list[indx][k][0]

            Nsa = 1000
            # Draw 2D samples as transformation of the angle
            Xalpha = np.linspace(0, 2*np.pi, Nsa)
            Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)])
            probs = []  # Vector with probabilities
            for i in range(Nsa):
                probs.append(np.exp(Wad.Watson_pdf_log(Xgrid[:,i],[mu,kappa]) ))
            
            probs = np.array(probs)
            # Plot it in polar coordinates
            X1_w = (1 + probs) * np.cos(Xalpha)
            X2_w = (1 + probs) * np.sin(Xalpha)
            
            gl.plot(X1_w,X2_w, legend = ["Kw(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))] ,
               alpha = 1, lw = 3, ls = "-.")
            
        elif(distribution_name == "vonMisesFisher"):
            #### Plot the pdf of the distributino !
            ## Distribution parameters for Watson
            kappa = float(theta_list[indx][k][1])
            mu = theta_list[indx][k][0]

            Nsa = 1000
            # Draw 2D samples as transformation of the angle
            Xalpha = np.linspace(0, 2*np.pi, Nsa)
            Xgrid= np.array([np.cos(Xalpha), np.sin(Xalpha)])
            
            probs = []  # Vector with probabilities
            for i in range(Nsa):
                probs.append(np.exp(vMFd.vonMisesFisher_pdf_log(Xgrid[:,i],[mu,kappa]) ))
                
            probs = np.array(probs)
            probs = probs.reshape((probs.size,1)).T
            # Plot it in polar coordinates
            X1_w = (1 + probs) * np.cos(Xalpha)
            X2_w = (1 + probs) * np.sin(Xalpha)
            
#            print X1_w.shape, X2_w.shape
            gl.plot(X1_w,X2_w, 
                 alpha = 1, lw = 3, ls = "-.", legend = ["Kvmf(%i). pi:%0.2f"%(k,  float(model_theta_list[indx][0][0,k]))]) 
                
    ax1.axis('equal')
    gl.savefig(folder_images +'Final_State. K_G:'+str(K_G)+ ', K_W:' + str(K_W)  + ', K_vMF:' + str(K_vMF) + '.png', 
           dpi = 100, sizeInches = [12, 6])
Ejemplo n.º 53
0
    sigmaXhatList = ul.fnp([ x[0,0] for x in SigmaXXhatList])
    sigmaXpredList= ul.fnp([ x[0,0] for x in SigmaXXpredList])
    sigmaXpredtestList = ul.fnp([ x[0,0] for x in SigmaXXpredtestList])
    
    sigmaXhatList = np.sqrt(sigmaXhatList )
    SigmaXpredList = np.sqrt(sigmaXpredList)
    
    # Now we plot
    RealPrice = Matrix_tr[:,[0]]
    EstimatedPrice = Yhat[:,[0]]
    PredictedPrice = Ypred[:,[0]]
    PredictedPriceTest = Ypredtest[:,[0]]
#    gl.plot([], diff, legend = ["Estate"])
    
    # Plot the training data and the estimated state
    gl.scatter(dates, RealPrice, legend = ["Real"])
    gl.plot_timeSeriesRange(dates, EstimatedPrice,sigmaXhatList, legend = ["Estate"], nf = 0)
    
    # Plot the one Step prediction
    dates_OneStepPred = ul.fnp(range(0, dates.size + 1))
    gl.plot_timeSeriesRange(dates_OneStepPred, PredictedPrice[:,:],sigmaXpredList[:,:], legend = ["Prediction"], nf = 0)
    
    ## Plot the future prediction
    dates_test = ul.fnp(range(dates.size, dates.size + Ntest))
    gl.plot_timeSeriesRange(dates_test, PredictedPriceTest[:-1,:],sigmaXpredtestList[:-1,:], legend = ["Prediction future"], nf = 0)

    # Using the state formulate, plot the prediction line from each state point.
    for n in range (0,Ns):
        start_point = XhatList[:,[n]]
        end_point = A.dot(start_point)
        
Ejemplo n.º 54
0
    
    if ((step+1) % step_period == 0):
        # This will always happen after the first Num_iterations
        Network.save_variables()

loss_tr, accuracy_tr = Network.get_loss_accuracy(X_data_tr, Y_data_tr)
print ("The final loss:" , loss_tr)
print ("The final variables:" , W_values,b_values,s_value)

## Plot the loss function against the parameters !! 
## Get the surface for the loss


####### PLOT THE EVOLUTION OF RMSE AND PARAMETERS ############
gl.init_figure()
ax1 = gl.scatter(X_data_tr, Y_data_tr, lw = 3,legend = ["tr points"], labels = ["Data", "X","Y"])
ax2 = gl.scatter(X_data_val, Y_data_val, lw = 3,legend = ["val points"])

gl.set_fontSizes(ax = [ax1,ax2], title = 20, xlabel = 20, ylabel = 20, 
                  legend = 20, xticks = 12, yticks = 12)

x_grid = np.linspace(np.min([X_data_tr]) -1, np.max([X_data_val]) +1, 100)
y_grid = x_grid * W_values + b_values

gl.plot (x_grid, y_grid, legend = ["training line"])
gl.savefig(folder_images +'Training_Example_Data.png', 
           dpi = 100, sizeInches = [14, 4])

####### PLOT THE EVOLUTION OF RMSE AND PARAMETERS ############
gl.set_subplots(2,1)
ax1 = gl.plot([], tr_loss, nf = 1, lw = 3, labels = ["RMSE loss and parameters. Learning rate: %.3f"%train_config.lr, "","RMSE"], legend = ["train"])
Ejemplo n.º 55
0
    EstimatedPrice = Yhat[:,[0]]
    PredictedPrice = Ypred[:,[0]]
    
    sigmaXhatList = ul.fnp([ x[0,0] for x in SigmaXXhatList])
    sigmaXpredList= ul.fnp([ x[0,0] for x in SigmaXXpredList])
    sigmaXhatList = np.sqrt(sigmaXhatList )
    SigmaXpredList = np.sqrt(sigmaXpredList)
    
    sigmaYhatList = np.sqrt(sigmaXhatList**2 + MeasurCovNoise[0,0])
    
    PredictedPriceTest = Ypredtest[:,[0]]
    sigmaXpredtestList = ul.fnp([ x[0,0] for x in SigmaXXpredtestList])
    sigmaXpredtestList = np.sqrt(sigmaXpredtestList)

    # Plot the training data and the estimated state
    gl.scatter(dates, RealPrice, legend = ["Real"])
    gl.plot_timeSeriesRange(dates, EstimatedPrice,sigmaXhatList, legend = ["Estate"], nf = 0)
    gl.plot_timeSeriesRange(dates, EstimatedPrice,sigmaYhatList, legend = ["Estate"], nf = 0)
    
    # Plot the one Step prediction
    dates_OneStepPred = ul.fnp(range(0, dates.size + 1))
    gl.plot_timeSeriesRange(dates_OneStepPred, PredictedPrice[:,:],SigmaXpredList[:,:], legend = ["Prediction"], nf = 0)
#    
    ## Plot the future prediction
    dates_test = ul.fnp(range(dates.size, dates.size + Ntst +1))
    gl.plot_timeSeriesRange(dates_test, PredictedPriceTest[:,:],sigmaXpredtestList[:,:], legend = ["Prediction future"], nf = 0)
    
    ######################################################################
    ## Optimization !!! 

    xopt = myKF.optimize_parameters(100,100, 100)
Ejemplo n.º 56
0
#    gl.init_figure()
    i_1 = 2
    i_2 = 0
    X_1,X_2 = X[:,[i_1]], X[:,[i_2]]
    mu_1, mu_2  = mus[i_1],mus[i_2]
    
    Xjoint = np.concatenate((X_1,X_2), axis = 1).T
    std_1, std_2 = stds[i_1],stds[i_2]
    
    mu = mus[[i_1,i_2]]
    cov = np.cov(Xjoint)
    std_K = 3
    
    ## Do stuff now
    ax1 = gl.subplot2grid((1,2), (0,0), rowspan=1, colspan=1)
    gl.scatter(Xjoint[0,:],Xjoint[1,:], alpha = 0.5, ax = ax1, lw = 4, AxesStyle = "Normal",
               labels = ["","U1", "U2"])
    
    ax1.axis('equal')
    
    xx, yy, zz = bMA.get_gaussian2D_pdf( xbins=40j, ybins=40j, mu = mu, cov = cov, 
                      std_K = std_K, x_grid = None)
    ax1.contour(xx, yy, zz, linewidths = 3, linestyles = "solid", alpha = 0.8,
                colors = None, zorder = 100)
    
    ######## Transformation !!
    
    A = np.array([[0.9,2],[0.8,0.7]])
    mu = np.array([-1.5,2]).reshape(2,1)
    Yjoint = A.dot(Xjoint) + mu
    
    cov = np.cov(Yjoint)
X2 = probs * np.sin(Xalpha)

gl.plot(X1,X2, 
        legend = ["pdf k:%f, mu_angle: %f"%(kappa,mu_angle)], 
        labels = ["Watson Distribution", "Angle(rad)", "pdf"],
         nf = 1, na = 1)   

## Generate samples
RandWatson = Was.randWatson(Nsampling, mu, kappa)

mu_est2, kappa_est2 = Wae.get_Watson_muKappa_ML(RandWatson)
print "Real: ", mu, kappa
print "Estimate: ", mu_est2, kappa_est2

gl.scatter(RandWatson[:,0],RandWatson[:,1], 
        legend = ["pdf k:%f, mu_angle: %f"%(kappa,mu_angle)], 
        labels = ["Watson Distribution", "Angle(rad)", "pdf"],
         nf = 1, na = 1, alpha = 0.1)   
         
#new_samples = sl.InvTransSampGrid(probs, Xalpha, Nsa * 2)

########################################################
""" With 3D sphere """
########################################################

# Data generation parameters
Nsa = 100  # Number of samples we will draw
Nsampling = 1000
## Distribution parameters
kappa = 20  # "Variance" of the circular multivariate guassian
#mu_angle = [0.3*np.pi, 0.8*np.pi]  # Mean angle direction
mu_angle = [0.5*np.pi, 0.5*np.pi]  # Mean angle direction
Ejemplo n.º 58
0
if(qq_plot):
    # Get the histogram and gaussian estimations !
    ## Scatter plot of the points 


    gl.set_subplots(1,2)
    
    x_grid_emp, y_val_emp = bMA.empirical_1D_cdf(ret1)
    
    x_grid = np.linspace(x_grid_emp[0],x_grid_emp[-1],100)
    x_grid, y_val = bMA.gaussian1D_points_cdf(X = ret1, x_grid = x_grid)
    
    ax1 = gl.plot(X = x_grid, Y = y_val, AxesStyle = "Normal", nf = 1,
                 color = "k", alpha = 0.5)
    
    gl.scatter(x_grid_emp, y_val_emp, color = "k",
            labels = ["","",""], legend = ["empirical cdf"])
    
    
    ## Now here we just plot it one againts each other like in a regression 
    ## problem !
    
#    ax2 = gl.plot(X = y_val_emp, Y = y_val, AxesStyle = "Normal", nf = 1,
#                 color = "k", alpha = 0.5)
    x_grid, y_val = bMA.gaussian1D_points_cdf(X = ret1, x_grid = x_grid_emp)
    gl.scatter(X = y_val_emp, Y = y_val, color = "k",
            labels = ["","",""], legend = ["empirical cdf"], nf = 1)
            
    gl.savefig(folder_images +'q-qplot.png', 
               dpi = 100, sizeInches = [14,6])