Ejemplo n.º 1
0
    return X_test, y_test, pvals, keys, time


if __name__ == "__main__":

    models = {
        'SVM': load_model('models/SVM_transit.h5'),
        'MLP': load_model('models/MLP_transit.h5'),
        'Wavelet MLP': load_model('models/Wavelet MLP_transit.h5'),
        'CNN 1D': load_model('models/CNN 1D_transit.h5'),
    }

    # load OG data
    X_test, y_test, pvals, keys, OGtime = load_data('transit_data_test.pkl',
                                                    whiten=True,
                                                    NULL=False)

    colors = {
        'MLP': 'red',
        'Wavelet MLP': 'green',
        'CNN 1D': 'blue',
        'SVM': 'orange'
    }

    # resolution of data relative original
    npts = np.arange(X_test.shape[1] * 0.25, X_test.shape[1] * 2,
                     30).astype(int)
    idxs = np.arange(X_test.shape[1])

    # filter by
Ejemplo n.º 2
0
def generate(N):

    try:
        X_test, y_test, pvals, keys, time = load_data(
            'test_dt{}.pkl'.format(N), whiten=True, NULL=False)
    except:
        print('Generating Data:', N)
        settings = {'ws': 360, 'dt': 360. / N}
        hw = (0.5 * N * settings['dt']) / 60. / 24.  # half width in days
        t = np.linspace(1 - hw, 1 + hw, N)
        dt = t.max() - t.min()

        # default transit parameters
        init = {
            'rp': 0.1,
            'ar': 12.0,  # Rp/Rs, a/Rs
            'per': 2,
            'inc': 90,  # Period (days), Inclination
            'u1': 0.5,
            'u2': 0,  # limb darkening (linear, quadratic)
            'ecc': 0,
            'ome': 0,  # Eccentricity, Arg of periastron
            'a0': 1,
            'a1': 0,  # Airmass extinction terms
            'a2': 0,
            'tm': 1
        }  # tm = Mid Transit time (Days)

        pgrid_test = {
            # TEST data
            'rp': (np.array([200, 500, 1000, 2500, 5000, 10000]) /
                   1e6)**0.5,  # transit depth (ppm) -> Rp/Rs
            'per': np.linspace(*[2, 4, 5]),
            'inc': np.array([86, 87, 90]),
            'sig_tol': np.linspace(
                *[0.25, 3, 12]),  # generate noise based on X times the tdepth

            # stellar variability systematics
            'phi': np.linspace(*[0, np.pi, 4]),
            'A': np.array([250, 500, 1000, 2000]) / 1e6,
            'w': np.array([6, 12, 24]) / 24.,  # periods in days
            'PA': [
                -4 * dt, 4 * dt, 100
            ],  # doubles amp, zeros amp between min time and max time, 1000=no amplitude change
            'Pw':
            [-12 * dt, 4 * dt,
             100],  #-12dt=period halfs, 4dt=period doubles, 1000=no change
        }

        data = dataGenerator(**{
            'pgrid': pgrid_test,
            'settings': settings,
            'init': init
        })
        data.generate()

        pickle.dump(
            {
                'keys': data.keys,
                'results': data.results,
                'time': data.t
            }, open('pickle_data/test_dt{}.pkl'.format(N), 'wb'))
        X_test, y_test, pvals, keys, time = load_data(
            'test_dt{}.pkl'.format(N), whiten=True, NULL=False)

    return X_test, y_test, pvals, keys, time
from keras.utils import np_utils
import matplotlib.pyplot as plt
import numpy as np
import pickle

if __name__ == "__main__":

    models = {
        'SVM': load_model('models/SVM_transit.h5'),
        'MLP': load_model('models/MLP_transit.h5'),
        'Wavelet MLP': load_model('models/Wavelet MLP_transit.h5'),
        'CNN 1D': load_model('models/CNN 1D_transit.h5'),
    }

    # load DATA
    X_test, y_test, pvals, keys, time = load_data('transit_data_test.pkl',
                                                  whiten=True)
    Xw_test = wavy(X_test)
    Xc_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
    #y_test = np_utils.to_categorical(y_test, num_classes=2)

    tests = {
        'MLP': X_test,
        'Wavelet MLP': Xw_test,
        'CNN 1D': Xc_test,
        'SVM': X_test
    }

    colors = {
        'MLP': 'red',
        'Wavelet MLP': 'green',
        'CNN 1D': 'blue',