""",
        formatter_class=argparse.RawTextHelpFormatter)
    parser.add_argument('-n', "--NRN", help="NEURON TYPE", default='LIF')
    parser.add_argument('-a', "--amp",help="Amplitude of the current in pA",\
                        type=float, default=200.)
    parser.add_argument('-d', "--duration",help="Duration of the current step in ms",\
                        type=float, default=400.)
    parser.add_argument('-as', "--amplitudes",
                        help="ARRAY of Amplitude of different steps in pA",\
                        type=float, default=[], nargs='*')
    parser.add_argument('-ds', "--durations",
                        help="ARRAY of durations of different steps in ms",\
                        type=float, default=[], nargs='*')
    parser.add_argument('-dl', "--delay",help="Duration of the current step in ms",\
                        type=float, default=150.)
    parser.add_argument('-p', "--post",help="After-Pulse duration of the step (ms)",\
                        type=float, default=400.)
    parser.add_argument("-c", "--color", help="color of the plot", default='k')
    parser.add_argument("--save",
                        default='',
                        help="save the figures with a given string")
    parser.add_argument("-v", "--verbose", help="", action="store_true")
    args = parser.parse_args()

    from neural_network_dynamics.cells.pulse_protocols import current_pulse_sim
    from graphs.my_graph import graphs
    mg = graphs()

    mg.response_to_current_pulse(*current_pulse_sim(vars(args)))
    mg.show()
Ejemplo n.º 2
0
import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.datasets import make_moons
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

if __name__ == '__main__':

    import sys, os

    # visualization module
    sys.path.append('../..')
    from graphs.my_graph import graphs
    mg = graphs('screen')

    X, y = make_moons(n_samples=400, noise=0.30, random_state=42)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

    # Single Decision Tree Classifier
    tree = DecisionTreeClassifier()
    tree.fit(X_train, y_train)

    # Bagging Classifier
    bag_clf = BaggingClassifier(\
        DecisionTreeClassifier(),
        n_estimators=500, max_samples=0.5, bootstrap=True)
    bag_clf.fit(X_train, y_train)

    fig, AX = mg.figure(axes=(1, 2))
    for ax in AX: