def main(args, samplegraph): t1 = time.time() g = Graph() print("Reading...") g.read_edgelist(samplegraph, weighted=args.weighted) model = GraRep(graph=g, Kstep=args.kstep, dim=args.representation_size) t2 = time.time() print(t2 - t1) print("Saving embeddings...") model.save_embeddings(args.output)
def learn_model(args): """ Method to create adjacency matrix powers, read features, and learn embedding. :param args: Arguments object. """ A = read_graph(args.edge_path) model = GraRep(A, args) model.optimize() model.save_embedding()
model_lable = Model(input=sentence_input, output=lable_ls) low_encoder = Model(sentence_input, p_t) ############################################################################################################################### ## Training1 GRArep t1 = time.time() g = Graph() print "Reading data..." if args.graph_format == 'adjlist': g.read_adjlist(filename=args.input) elif args.graph_format == 'edgelist': g.read_edgelist(filename=args.input, weighted=args.weighted, directed=args.directed) model = GraRep(graph=g, Kstep=args.kstep) vectors = model.vectors X, Y = read_node_label(args.label_file) node_size = len(vectors) train_x = np.array([vectors[x] for x in X]) print("train_x.shape", train_x.shape) # ############################################################################################################################### # ## Prepare data def sentence_batch_generator(data, batch_size): n_batch = len(data) / batch_size batch_count = 0 np.random.shuffle(data)
from data_utils_cora import * from grarep import GraRep parser = argparse.ArgumentParser(description='Train and test LINE on tencent dataset') parser.add_argument('--embsize', default=50, type=int) parser.add_argument('--K', default=6, type=int) parser.add_argument('--C', default=2, type=float) args = parser.parse_args() random.seed(616) X_, A, y = load_data(path='../cora/') _, _, _, idx_train, idx_val, idx_test = get_splits(y) grarep = GraRep(A, emb_size_per_K=args.embsize, K=args.K) grarep.train(verbose=True) pca = PCA(n_components=args.embsize * args.K) X_pca = pca.fit_transform(X_) X = np.hstack([normalize(X_pca), normalize(grarep.emb)]) X_trn, X_val, X_tst = X[idx_train], X[idx_val], X[idx_test] y_trn, y_val, y_tst = y[idx_train], y[idx_val], y[idx_test] y_trn = np.argmax(y_trn, axis=1) y_val = np.argmax(y_val, axis=1) y_tst = np.argmax(y_tst, axis=1) print('Testing...') clf = LogisticRegression(C=args.C)