Ejemplo n.º 1
0
 def test_lcc_numpy(self):
     expected_lcc_matrix = np.array([
         [0, 1, 1, 0, 0],
         [0, 0, 0, 0, 0],
         [0, 0, 0, 1, 1],
         [0, 1, 0, 0, 0],
         [0, 0, 1, 0, 0],
     ])
     expected_nodelist = np.array([0, 1, 2, 3, 5])
     g = nx.DiGraph()
     [g.add_node(i) for i in range(1, 7)]
     g.add_edge(1, 2)
     g.add_edge(1, 3)
     g.add_edge(3, 4)
     g.add_edge(3, 4)
     g.add_edge(3, 6)
     g.add_edge(6, 3)
     g.add_edge(4, 2)
     g = nx.to_numpy_array(g)
     lcc_matrix, nodelist = gus.largest_connected_component(
         g, return_inds=True)
     np.testing.assert_array_equal(lcc_matrix, expected_lcc_matrix)
     np.testing.assert_array_equal(nodelist, expected_nodelist)
     lcc_matrix = gus.largest_connected_component(g)
     np.testing.assert_array_equal(lcc_matrix, expected_lcc_matrix)
Ejemplo n.º 2
0
    def test_lcc_scipy(self):
        expected_lcc_matrix = np.array([
            [0, 1, 1, 0, 0],
            [0, 0, 0, 0, 0],
            [0, 0, 0, 1, 1],
            [0, 1, 0, 0, 0],
            [0, 0, 1, 0, 0],
        ])
        expected_nodelist = np.array([0, 1, 2, 3, 5])
        adjacency = np.array([
            [0, 1, 1, 0, 0, 0, 0],  # connected
            [0, 0, 0, 0, 0, 0, 0],  # connected
            [0, 0, 0, 1, 0, 1, 0],  # connected
            [0, 1, 0, 0, 0, 0, 0],  # connected
            [0, 0, 0, 0, 0, 0, 0],  # not connected
            [0, 0, 1, 0, 0, 0, 0],  # connected
            [0, 0, 0, 0, 0, 0, 0],  # not connected
        ])
        sparse_adjacency = csr_matrix(adjacency)

        lcc_matrix, nodelist = gus.largest_connected_component(
            sparse_adjacency, return_inds=True)
        np.testing.assert_array_equal(lcc_matrix.toarray(),
                                      expected_lcc_matrix)
        np.testing.assert_array_equal(nodelist, expected_nodelist)
Ejemplo n.º 3
0
    def test_lcc_scipy_empty(self):
        adjacency = np.array([[0, 1], [1, 0]])
        adjacency = csr_matrix(adjacency)

        # remove the actual connecting edges. this is now a disconnected graph
        # with two nodes. however, scipy still stores the entry that now has a 0 in it
        # as having a 'nonempty' value, which is used in the lcc calculation
        adjacency[0, 1] = 0
        adjacency[1, 0] = 0
        lcc_adjacency = gus.largest_connected_component(adjacency)
        assert lcc_adjacency.shape[0] == 1
Ejemplo n.º 4
0
 def test_lcc_bad_matrix(self):
     A = np.array([0, 1])
     with self.assertRaises(ValueError):
         gus.largest_connected_component(A)