Ejemplo n.º 1
0
 def test_becke_transform(self):
     """Test becke transformation."""
     btf = BeckeRTransform(0.1, 1.1)
     tf_array = btf.transform(self.array)
     single_v = btf.transform(self.num)
     single_v2 = btf.transform(self.num_2)
     new_array = btf.inverse(tf_array)
     assert_allclose(new_array, self.array)
     assert_allclose(tf_array[0], single_v)
     assert_allclose(tf_array[-1], single_v2)
     # test tf and inverse
     self._transform_and_inverse(-1, 1, btf)
Ejemplo n.º 2
0
 def test_becke_parameter_calc(self):
     """Test parameter function."""
     R = BeckeRTransform.find_parameter(self.array, 0.1, 1.2)
     # R = 1.1
     assert np.isclose(R, 1.1)
     btf = BeckeRTransform(0.1, R)
     tf_array = btf.transform(self.array)
     assert tf_array[9] == 1.2
     # for even number of grid
     R = BeckeRTransform.find_parameter(self.array_2, 0.2, 1.3)
     btf_2 = BeckeRTransform(0.2, R)
     tf_elemt = btf_2.transform(
         np.array([(self.array_2[4] + self.array_2[5]) / 2]))
     assert_allclose(tf_elemt, 1.3)
Ejemplo n.º 3
0
    def test_becke_transform_f0_ode(self):
        """Test same result for 3rd order ode with becke tf and fx term."""
        btf = BeckeRTransform(0.1, 10)
        x = np.linspace(-0.9, 0.9, 20)
        btf = BeckeRTransform(0.1, 5)
        ibtf = InverseRTransform(btf)
        r = btf.transform(x)
        y = np.random.rand(2, x.size)
        coeff = [-1, -1, 2]

        def fx(x):
            return -1 / x**2

        def func(x, y):
            dy_dx = ODE._rearrange_trans_ode(x, y, coeff, ibtf, fx)
            return np.vstack((*y[1:], dy_dx))

        def bc(ya, yb):
            return np.array([ya[0], yb[0]])

        res = solve_bvp(func, bc, x, y)

        def func_ref(x, y):
            dy_dx = ODE._rearrange_ode(x, y, coeff, fx(x))
            return np.vstack((*y[1:], dy_dx))

        res_ref = solve_bvp(func_ref, bc, r, y)
        assert_allclose(res.sol(x)[0], res_ref.sol(r)[0], atol=1e-4)
Ejemplo n.º 4
0
 def test_errors_assert(self):
     """Test errors raise."""
     # parameter error
     with self.assertRaises(ValueError):
         BeckeRTransform.find_parameter(np.arange(5), 0.5, 0.1)
     # transform non array type
     with self.assertRaises(TypeError):
         btf = BeckeRTransform(0.1, 1.1)
         btf.transform("dafasdf")
     # inverse init error
     with self.assertRaises(TypeError):
         InverseRTransform(0.5)
     # type error for transform_1d_grid
     with self.assertRaises(TypeError):
         btf = BeckeRTransform(0.1, 1.1)
         btf.transform_1d_grid(np.arange(3))
     with self.assertRaises(ZeroDivisionError):
         btf = BeckeRTransform(0.1, 0)
         itf = InverseRTransform(btf)
         itf._d1(0.5)
     with self.assertRaises(ZeroDivisionError):
         btf = BeckeRTransform(0.1, 0)
         itf = InverseRTransform(btf)
         itf._d1(np.array([0.1, 0.2, 0.3]))
Ejemplo n.º 5
0
    def test_solver_ode_coeff_a_f_x_with_tf(self):
        """Test ode with a(x) and f(x) involved."""
        x = np.linspace(-0.999, 0.999, 20)
        btf = BeckeRTransform(0.1, 5)
        r = btf.transform(x)
        ibtf = InverseRTransform(btf)

        def fx(x):
            return 0 * x

        coeffs = [lambda x: x**2, lambda x: 1 / x**2, 0.5]
        bd_cond = [(0, 0, 0), (1, 0, 0)]
        # calculate diff equation wt/w tf.
        res = ODE.solve_ode(x, fx, coeffs, bd_cond, ibtf)
        res_ref = ODE.solve_ode(r, fx, coeffs, bd_cond)
        assert_allclose(res(x)[0], res_ref(r)[0], atol=1e-4)
Ejemplo n.º 6
0
    def test_solver_ode_bvp_with_tf(self):
        """Test result for high level api solve_ode with fx term."""
        x = np.linspace(-0.999, 0.999, 20)
        btf = BeckeRTransform(0.1, 5)
        r = btf.transform(x)
        ibtf = InverseRTransform(btf)

        def fx(x):
            return 1 / x**2

        coeffs = [-1, 1, 1]
        bd_cond = [(0, 0, 0), (1, 0, 0)]
        # calculate diff equation wt/w tf.
        res = ODE.solve_ode(x, fx, coeffs, bd_cond, ibtf)
        res_ref = ODE.solve_ode(r, fx, coeffs, bd_cond)
        assert_allclose(res(x)[0], res_ref(r)[0], atol=1e-4)
Ejemplo n.º 7
0
 def test_becke_infinite(self):
     """Test becke transformation when inf generated."""
     inf_array = np.linspace(-1, 1, 21)
     R = BeckeRTransform.find_parameter(inf_array, 0.1, 1.2)
     btf = BeckeRTransform(0.1, R, trim_inf=True)
     tf_array = btf.transform(inf_array)
     inv_array = btf.inverse(tf_array)
     assert_allclose(inv_array, inf_array)
     # extra test for neg inf
     # test for number
     result = btf._convert_inf(-np.inf)
     assert_almost_equal(result, -1e16)
     result = btf._convert_inf(np.inf)
     assert_almost_equal(result, 1e16)
     # test for array
     test_array = np.random.rand(5)
     test_array[3] = -np.inf
     result = btf._convert_inf(test_array)
     assert_almost_equal(result[3], -1e16)
     test_array[3] = np.inf
     result = btf._convert_inf(test_array)
     assert_almost_equal(result[3], 1e16)
Ejemplo n.º 8
0
    def test_poisson_solve(self):
        """Test the poisson solve function."""
        oned = GaussChebyshev(30)
        oned = GaussChebyshev(50)
        btf = BeckeRTransform(1e-7, 1.5)
        rad = btf.transform_1d_grid(oned)
        l_max = 7
        atgrid = AtomGrid(rad, degrees=[l_max])
        value_array = self.helper_func_gauss(atgrid.points)
        p_0 = atgrid.integrate(value_array)

        # test density sum up to np.pi**(3 / 2)
        assert_allclose(p_0, np.pi**1.5, atol=1e-4)
        sph_coor = atgrid.convert_cart_to_sph()[:, 1:3]
        spls_mt = Poisson._proj_sph_value(
            atgrid.rgrid,
            sph_coor,
            l_max // 2,
            value_array,
            atgrid.weights,
            atgrid.indices,
        )

        # test splines project fit gauss function well

        def gauss(r):
            return np.exp(-(r**2))

        for _ in range(20):
            coors = np.random.rand(10, 3)
            r = np.linalg.norm(coors, axis=-1)
            spl_0_0 = spls_mt[0, 0]
            interp_v = spl_0_0(r)
            ref_v = gauss(r) * np.sqrt(4 * np.pi)
            # 0.28209479 is the value in spherical harmonic Z_0_0
            assert_allclose(interp_v, ref_v, atol=1e-3)
        ibtf = InverseRTransform(btf)
        linsp = np.linspace(-1, 0.99, 50)
        bound = p_0 * np.sqrt(4 * np.pi)
        res_bv = Poisson.solve_poisson_bv(spls_mt[0, 0],
                                          linsp,
                                          bound,
                                          tfm=ibtf)

        near_rg_pts = np.array([1e-2, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2])
        near_tf_pts = ibtf.transform(near_rg_pts)
        long_rg_pts = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10])
        long_tf_pts = ibtf.transform(long_rg_pts)
        short_res = res_bv(near_tf_pts)[0] / near_rg_pts / (2 * np.sqrt(np.pi))
        long_res = res_bv(long_tf_pts)[0] / long_rg_pts / (2 * np.sqrt(np.pi))
        # ref are calculated with mathemetical
        # integrate[exp[-x^2 - y^2 - z^2] / sqrt[(x - a)^2 + y^2 +z^2], range]
        ref_short_res = [
            6.28286,  # 0.01
            6.26219,  # 0.1
            6.20029,  # 0.2
            6.09956,  # 0.3
            5.79652,  # 0.5
            5.3916,  # 0.7
            4.69236,  # 1.0
            4.22403,  # 1.2
        ]
        ref_long_res = [
            2.77108,  # 2
            1.85601,  # 3
            1.39203,  # 4
            1.11362,  # 5
            0.92802,  # 6
            0.79544,  # 7
            0.69601,  # 8
            0.61867,  # 9
            0.55680,  # 10
        ]
        assert_allclose(short_res, ref_short_res, atol=5e-4)
        assert_allclose(long_res, ref_long_res, atol=5e-4)
        # solve same poisson equation with gauss directly
        gauss_pts = btf.transform(linsp)
        res_gs = Poisson.solve_poisson_bv(gauss, gauss_pts, p_0)
        gs_int_short = res_gs(near_rg_pts)[0] / near_rg_pts
        gs_int_long = res_gs(long_rg_pts)[0] / long_rg_pts
        assert_allclose(gs_int_short, ref_short_res, 5e-4)
        assert_allclose(gs_int_long, ref_long_res, 5e-4)
Ejemplo n.º 9
0
 def test_becke_inverse(self):
     """Test inverse transform basic function."""
     btf = BeckeRTransform(0.1, 1.1)
     inv = InverseRTransform(btf)
     new_array = inv.transform(btf.transform(self.array))
     assert_allclose(new_array, self.array)