Ejemplo n.º 1
0
 def test_creation(self):
     with warnings.catch_warnings():
         warnings.filterwarnings("ignore")
         with make("l2rpn_wcci_2020", test=True) as env:
             # test i can create
             converter = self.init_converter(env)
             act_space = GymActionSpace(env=env, converter=converter)
             act_space.sample()
Ejemplo n.º 2
0
    def test_json(self):
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore")
            with make("l2rpn_wcci_2020", test=True) as env:
                # test i can create
                obs_space = GymObservationSpace(env)
                act_space = GymActionSpace(env)

                obs_space.seed(0)
                act_space.seed(0)

                self._aux_test_json(obs_space)
                self._aux_test_json(act_space)
Ejemplo n.º 3
0
 def test_creation(self):
     with warnings.catch_warnings():
         warnings.filterwarnings("ignore")
         with make(self.get_env_name(), test=True) as env:
             # test i can create
             obs_space = GymObservationSpace(env)
             act_space = GymActionSpace(env)
Ejemplo n.º 4
0
    def _init_gym_converter(self):
        if self.__gym_action_space is None:
            # lazy import
            from gym import spaces
            from grid2op.gym_compat import GymActionSpace
            # i do that not to duplicate the code of the low / high bounds
            gym_action_space = GymActionSpace(self.init_action_space)
            low = tuple()
            high = tuple()
            order_gym = []
            dtypes = []
            shapes = []
            sizes = []
            prev = 0
            for k, v in gym_action_space.spaces.items():
                order_gym.append(k)
                dtypes.append(v.dtype)
                if isinstance(v, spaces.MultiBinary):
                    low += tuple([0 for _ in range(v.n)])
                    high += tuple([1 for _ in range(v.n)])
                    my_size = v.n
                elif isinstance(v, spaces.Box):
                    low += tuple(v.low)
                    high += tuple(v.high)
                    my_size = v.low.shape[0]
                else:
                    raise RuntimeError(
                        "Impossible to convert this converter to gym. Type {} of data "
                        "encountered while only MultiBinary and Box are supported for now."
                    )
                shapes.append(my_size)
                sizes.append(np.arange(my_size) + prev)
                prev += my_size
            self.__gym_action_space = gym_action_space
            my_type = spaces.Box(low=np.array(low),
                                 high=np.array(high),
                                 dtype=dt_float)

            order_me = []
            _order_gym_2_me = np.zeros(my_type.shape[0], dtype=dt_int) - 1
            _order_me_2_gym = np.zeros(my_type.shape[0], dtype=dt_int) - 1
            for el in self.init_action_space.attr_list_vect:
                order_me.append(GymActionSpace.keys_grid2op_2_human[el])

            prev = 0
            order_gym = list(gym_action_space.spaces.keys())
            for id_me, nm_attr in enumerate(order_me):
                id_gym = order_gym.index(nm_attr)
                index_me = np.arange(shapes[id_gym]) + prev
                _order_gym_2_me[sizes[id_gym]] = index_me
                _order_me_2_gym[index_me] = sizes[id_gym]
                # self.__order_gym_2_me[this_gym_ind] = sizes[id_me]
                prev += shapes[id_gym]
            self.__order_gym_2_me = _order_gym_2_me
            self.__order_me_2_gym = _order_me_2_gym
            self.__dict_space = {"action": my_type}
            self.__order_gym = order_gym
            self.__dtypes_gym = dtypes
            self.__shapes_gym = shapes
Ejemplo n.º 5
0
 def test_creation(self):
     with warnings.catch_warnings():
         warnings.filterwarnings("ignore")
         if self.get_env_path() is not None:
             env_path_or_name = os.path.join(self.get_env_path(),
                                             self.get_env_name())
         else:
             env_path_or_name = self.get_env_name()
         with make(env_path_or_name, test=True) as env:
             # test i can create
             obs_space = GymObservationSpace(env)
             act_space = GymActionSpace(env)
Ejemplo n.º 6
0
    def test_to_from_gym_act(self):
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore")
            with make("l2rpn_wcci_2020", test=True) as env:
                converter = self.init_converter(env)
                act_space = GymActionSpace(env=env, converter=converter)
                act_space.seed(0)
                converter.seed(0)

                gym_act = act_space.sample()
                act = act_space.from_gym(gym_act)
                self._aux_test_json(act_space, gym_act)
                gym_act2 = act_space.to_gym(act)
                act2 = act_space.from_gym(gym_act2)
                g2op_act = converter.convert_act(act)
                g2op_act2 = converter.convert_act(act2)
                assert g2op_act == g2op_act2

                act_space.seed(0)
                for i in range(10):
                    gym_act = act_space.sample()
                    act = act_space.from_gym(gym_act)
                    self._aux_test_json(act_space, gym_act)
                    gym_act2 = act_space.to_gym(act)
                    act2 = act_space.from_gym(gym_act2)
                    g2op_act = converter.convert_act(act)
                    g2op_act2 = converter.convert_act(act2)
                    assert g2op_act == g2op_act2
Ejemplo n.º 7
0
    def test_to_from_gym_act(self):
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore")
            with make("l2rpn_wcci_2020", test=True) as env:
                act_space = GymActionSpace(env)

                act = env.action_space()
                gym_act = act_space.to_gym(act)
                self._aux_test_json(act_space, gym_act)
                assert act_space.contains(gym_act)
                act2 = act_space.from_gym(gym_act)
                assert act == act2

                act_space.seed(0)
                for i in range(10):
                    gym_act = act_space.sample()
                    act = act_space.from_gym(gym_act)
                    self._aux_test_json(act_space, gym_act)
                    gym_act2 = act_space.to_gym(act)
                    act2 = act_space.from_gym(gym_act2)
                    assert act == act2