Ejemplo n.º 1
0
#!/usr/bin/env python
'''Run a 1-variable sweep in which I->I connections are enabled.

Run a network for a short time; save data and plot activity.
'''
from __future__ import absolute_import, print_function, division

from grid_cell_model.submitting.noise.templates import ParameterSweep
from default_params import defaultParameters as dp

sweep = ParameterSweep('../common/simulation_stationary.py', dp)

parser = sweep.parser
parser.add_argument('--nthreads', type=int, default=1,
                    help='Number of simulation threads.')
parser.add_argument('--Ivel', type=float,
                    help='Velocity input (pA). Default is 50 pA.')
parser.add_argument('--g_AMPA_total', type=float,
                    help='Total E->I synapse strength (nS)')
parser.add_argument('--g_GABA_total', type=float,
                    help='Total I->E synapse strength (nS)')
o = parser.parse_args()

p = {}
p['master_seed'] = 123456

p['time']      = 10e3 if o.time is None else o.time  # ms
p['nthreads']  = o.nthreads
p['verbosity'] = o.verbosity
p['Ivel']      = 50. if o.Ivel is None else o.Ivel  # mA
p['use_II']    = 1
#!/usr/bin/env python
'''Parameter sweeps of E-surround network in which connections are generated
probabilistically with constant weight.

2D parameter sweep that simulates a stationary bump and records spiking
activity and synaptic currents from selected neurons.'''
from __future__ import absolute_import, print_function, division

from grid_cell_model.submitting.noise.templates import ParameterSweep
from default_params import defaultParameters as dp

sweep = ParameterSweep('../common/simulation_stationary.py', dp)

p = {}
p['master_seed'] = 123456

p['probabilistic_synapses'] = 1

sweep.update_user_parameters(p)
sweep.run()
Ejemplo n.º 3
0
      for the duration of the simulation.
    - The speed is controlled by IvelMax and dIvel parameters (currently
      [0, 100] pA, with a step of 10 pA
    - At the end of each run, spikes from E and I population are exported to
      the output file.

.. note::
    When simulating on a machine with a run time limit, use a limit around
    08h:00:00
'''
from __future__ import absolute_import, print_function, division

from grid_cell_model.submitting.noise.templates import ParameterSweep
from default_params import defaultParameters as dp

sweep = ParameterSweep('simulation_velocity.py', dp)

p = {}
p['master_seed'] = 123456

p['EI_flat'] = 0
p['IE_flat'] = 0
p['use_EE']  = 1
p['g_EE_total'] = 510.      # nS
p['pEE_sigma'] = 0.5 / 6

p['IvelMax']                = 100   # pA
p['dIvel']                  = 10    # pA

sweep.update_user_parameters(p)
sweep.run()
    - The bump moves around and (should) track the position of the animal.
    - Spikes from the whole E population and some cells from the I population
      are then exported to the output file.

.. note::
    When simulating on a machine with a run time limit, use a limit around
    08h:00:00 or more.
'''
from __future__ import absolute_import, print_function, division

import numpy as np
from grid_cell_model.submitting.noise.templates import ParameterSweep
from grid_cell_model.submitting.noise.slopes import ISurroundPastollSelector
from default_params import defaultParameters as dp

sweep = ParameterSweep('simulation_grids.py', dp)
parser = sweep.parser
parser.add_argument('--pc_conn_weight', type=float, help='Connection weight from PCs to E cells (pA).')
parser.parse_args()

sweep.set_bump_slope_selector(ISurroundPastollSelector('bump_slope_data',
                                                       -np.infty))

p = {}
p['master_seed']      = 123456
if parser.options.pc_conn_weight is not None:
    p['pc_conn_weight'] = parser.options.pc_conn_weight

p['Iext_e_theta'] = 650.
p['Iext_i_theta'] = 50.
p['g_uni_GABA_frac'] = 0.3125
      strong place cell input.
    - The network receives velocity input for the rest of the simulation.
    - The bump moves around and (should) track the position of the animal.
    - Spikes from the whole E population and some cells from the I population
      are then exported to the output file.

.. note::
    When simulating on a machine with a run time limit, use a limit around
    08h:00:00
'''
from __future__ import absolute_import, print_function, division

import numpy as np
from grid_cell_model.submitting.noise.templates import ParameterSweep
from grid_cell_model.submitting.noise.slopes import ProbabilisticConnectionsSelector
from default_params import defaultParameters as dp

sweep = ParameterSweep('simulation_grids.py', dp)
sweep.set_bump_slope_selector(
    ProbabilisticConnectionsSelector('bump_slope_data', -np.infty))

p = {}
p['master_seed']      = 123456
p['velON']            = 1
p['pcON']             = 1
p['constantPosition'] = 0
p['probabilistic_synapses'] = 1

sweep.update_user_parameters(p)
sweep.run()
Ejemplo n.º 6
0
    - The bump moves around and (should) track the position of the animal.
    - Spikes from the whole E population and some cells from the I population
      are then exported to the output file.

.. note::
    When simulating on a machine with a run time limit, use a limit around
    08h:00:00 or more (per trial).
'''
from __future__ import absolute_import, print_function, division

import numpy as np
from grid_cell_model.submitting.noise.templates import ParameterSweep
from grid_cell_model.submitting.noise.slopes import PickedISurroundPastollSelector
from default_params import defaultParameters as dp

sweep = ParameterSweep('simulation_grids.py', dp)
parser = sweep.parser
parser.add_argument('--g_AMPA_total', type=float)
parser.add_argument('--g_AMPA_row', type=float, help='Row index into bump slope data.')
parser.add_argument('--g_GABA_total', type=float)
parser.add_argument('--g_GABA_col', type=float, help='Column index into bump slope data.')
parser.add_argument('--velON', type=int, choices=[0, 1], default=1, help='Set velocity input ON or OFF.')
parser.parse_args()
o = parser.options

sweep.set_bump_slope_selector(PickedISurroundPastollSelector(
    'bump_slope_data',
    -np.infty,
    o.g_AMPA_row,
    o.g_GABA_col,
    parser.dimensions))
    - The bump moves around and (should) track the position of the animal.
    - Spikes from the whole E population and some cells from the I population
      are then exported to the output file.

.. note::
    When simulating on a machine with a run time limit, use a limit around
    08h:00:00
'''
from __future__ import absolute_import, print_function, division

import numpy as np
from grid_cell_model.submitting.noise.templates import ParameterSweep
from grid_cell_model.submitting.noise.slopes import IIConnectionsSelector
from default_params import defaultParameters as dp

sweep = ParameterSweep('simulation_grids.py', dp)
sweep.set_bump_slope_selector(IIConnectionsSelector('bump_slope_data',
                                                    -np.infty))

p = {}
p['master_seed']      = 123456
p['velON']            = 1
p['pcON']             = 1
p['constantPosition'] = 0

p['use_II'] = 1
p['g_II_total'] = 70.               # nS

sweep.update_user_parameters(p)
sweep.run()
    - Bump is initialized, in the beginning [0, theta_start_t], by a very
      strong place cell input.
    - The network receives velocity input for the rest of the simulation.
    - The bump moves around and (should) track the position of the animal.
    - Spikes from the whole E population and some cells from the I population
      are then exported to the output file.

.. note::
    When simulating on a machine with a run time limit, use a limit around
    08h:00:00
"""
from __future__ import absolute_import, print_function, division

import numpy as np
from grid_cell_model.submitting.noise.templates import ParameterSweep
from grid_cell_model.submitting.noise.slopes import ProbabilisticConnectionsSelector
from default_params import defaultParameters as dp

sweep = ParameterSweep("simulation_grids.py", dp)
sweep.set_bump_slope_selector(ProbabilisticConnectionsSelector("bump_slope_data", -np.infty))

p = {}
p["master_seed"] = 123456
p["velON"] = 1
p["pcON"] = 1
p["constantPosition"] = 0
p["probabilistic_synapses"] = 1

sweep.update_user_parameters(p)
sweep.run()
#!/usr/bin/env python
'''Parameter sweeps of network with extra E->E connections and flat E-I
profiles.

2D parameter sweep that simulates a stationary bump and records spiking
activity and synaptic currents from selected neurons.'''
from __future__ import absolute_import, print_function, division

from grid_cell_model.submitting.noise.templates import ParameterSweep
from default_params import defaultParameters as dp

sweep = ParameterSweep('../common/simulation_stationary.py', dp)
parser = sweep.parser
parser.add_argument('--g_AMPA_total', type=float,
                    help='Strength of E->I synapses')
parser.add_argument('--g_GABA_total', type=float,
                    help='Strength of I->E synapses')
parser.add_argument('--g_EE_total', type=float,
                    help='Strength of E->E synapses')
parser.add_argument('--pEE_sigma', type=float, help='Width of E->E synapses')
sweep.parse_args()
o = sweep.options

p = {}
p['master_seed'] = 123456

p['EI_flat'] = 1
p['IE_flat'] = 1
p['use_EE']  = 1

if o.g_AMPA_total is not None:
Ejemplo n.º 10
0
    - The network receives velocity input for the rest of the simulation.
    - The bump moves around and (should) track the position of the animal.
    - Spikes from the whole E population and some cells from the I population
      are then exported to the output file.

.. note::
    When simulating on a machine with a run time limit, use a limit around
    08h:00:00 or more.
'''
from __future__ import absolute_import, print_function, division

import numpy as np
from grid_cell_model.submitting.noise.templates import ParameterSweep
from grid_cell_model.submitting.noise.slopes import ISurroundOrigSelector
from default_params import defaultParameters as dp

sweep = ParameterSweep('simulation_grids.py', dp)
sweep.set_bump_slope_selector(ISurroundOrigSelector('bump_slope_data',
                                                    -np.infty))

p = {}
p['master_seed']      = 123456
p['velON']            = 1
p['pcON']             = 1
p['constantPosition'] = 0

p['AMPA_gaussian'] = 1

sweep.update_user_parameters(p)
sweep.run()