Ejemplo n.º 1
0
 def test_extrapolation(self):
     """ Check that extrapolation filter works """
     N = 5
     y = np.linspace(0, 1000, N)
     x = np.zeros(N)
     grid = gridpp.Points(y, x, x, x, gridpp.Cartesian)
     points = gridpp.Points([0, 100, 900, 1000], [0, 0, 0, 0], [0, 0, 0, 0],
                            [0, 0, 0, 0], gridpp.Cartesian)
     Y = points.size()
     pratios = 0.1 * np.ones(Y)
     structure = gridpp.BarnesStructure(500)
     pobs = [0, 1, 1, 0]
     background = np.zeros(grid.size())
     pbackground = np.zeros(Y)
     max_points = 10
     output0 = gridpp.optimal_interpolation(grid, background, points, pobs,
                                            pratios, pbackground, structure,
                                            max_points, False)
     output1 = gridpp.optimal_interpolation(grid, background, points, pobs,
                                            pratios, pbackground, structure,
                                            max_points, True)
     # Turning off extrapolation should mean we don't get increments greater than 1
     self.assertTrue(np.max(output0) == 1)
     self.assertTrue(np.max(output1) > 1)
     I = np.where(output1 < 1)[0]
     np.testing.assert_array_almost_equal(output0[I], output1[I])
Ejemplo n.º 2
0
    def test_missing_values(self):
        """Check that missing values are not used in OI"""
        obs = np.array([1, np.nan, 2, 3, np.nan, np.nan, 4, np.nan])
        N = len(obs)
        y = np.arange(0, N * 1000, 1000)
        background = np.zeros(N)
        points = gridpp.Points(y, np.zeros(N), np.zeros(N), np.zeros(N),
                               gridpp.Cartesian)
        ratios = np.ones(N)
        structure = gridpp.BarnesStructure(1000, 0)
        analysis = gridpp.optimal_interpolation(points, background, points,
                                                obs, ratios, background,
                                                structure, 100)

        I = np.where(np.isnan(y) == 0)[0]
        points1 = gridpp.Points(y[I], np.zeros(len(I)), np.zeros(len(I)),
                                np.zeros(len(I)), gridpp.Cartesian)
        analysis1 = gridpp.optimal_interpolation(points, background, points1,
                                                 obs[I], ratios[I],
                                                 background[I], structure, 100)
        np.testing.assert_array_almost_equal(analysis, analysis1)
Ejemplo n.º 3
0
    def test_cross_validation(self):
        y = np.array([0, 1000, 2000, 3000])
        N = len(y)
        obs = np.array([0, 1, 2, 3])
        background = np.zeros(N)
        points = gridpp.Points(y, np.zeros(N), np.zeros(N), np.zeros(N),
                               gridpp.Cartesian)
        ratios = np.ones(N)
        Icv = [0, 2, 3]
        points_cv = gridpp.Points(y[Icv], np.zeros(N - 1), np.zeros(N - 1),
                                  np.zeros(N - 1), gridpp.Cartesian)
        structure = gridpp.BarnesStructure(1000, 0)
        structure_cv = gridpp.CrossValidation(structure, 750)

        analysis = gridpp.optimal_interpolation(points, background, points_cv,
                                                obs[Icv], ratios[Icv],
                                                background[Icv], structure,
                                                100)
        analysis_cv = gridpp.optimal_interpolation(points, background, points,
                                                   obs, ratios, background,
                                                   structure_cv, 100)
Ejemplo n.º 4
0
    def test_invalid_arguments(self):
        """ Check that exception is thrown on invalid input values """

        # Set up struct with valid input arguments
        ok_args = collections.OrderedDict({
            'grid':
            gridpp.Grid([[0, 0, 0]], [[0, 2500, 10000]], [[0, 0, 0]],
                        [[0, 0, 0]], gridpp.Cartesian),
            'background':
            np.zeros([1, 3]),
            'points':
            gridpp.Points([0], [2500], [0], [0], gridpp.Cartesian),
            'pobs': [1],
            'pratios': [0.1],
            'pbackground': [0],
            'structure':
            gridpp.BarnesStructure(2500),
            'max_points':
            10
        })

        # Set up struct with invalid input arguments that will be substituted into ok_args one at a
        # time in order to look for an exception being raised. Use an array of different invalid
        # arguments for each key.
        x = np.zeros([3, 2])
        invalid_args = {
            # Grid size mismatch, and coordinate-type mismatch
            'grid': [
                gridpp.Grid(x, x, x, x, gridpp.Cartesian),
                gridpp.Grid([[0, 0, 0]], [[0, 2500, 10000]])
            ],
            # Points size mismatch, and coordinate-type mismatch
            'points': [
                gridpp.Points([0, 1], [0, 2500], [0, 0], [0, 0],
                              gridpp.Cartesian),
                gridpp.Points([0], [2500])
            ],
            'pratios': [np.zeros(11)],
            'pobs': [np.zeros([11])],
            'background': [np.zeros([2, 11])],
            'pbackground': [np.zeros(21)],
            'max_points': [-1]
        }

        for key in invalid_args.keys():
            for arg in invalid_args[key]:
                args0 = ok_args.copy()
                args0[key] = arg
                q = [args0[f] for f in args0]
                with self.subTest(key=key, arg=arg):
                    with self.assertRaises(ValueError) as e:
                        output = gridpp.optimal_interpolation(*q)
Ejemplo n.º 5
0
    def test_cross_validation_grid(self):
        """ Check that the CV structure function works """
        np.random.seed(1000)
        y, x = np.meshgrid(np.arange(0, 3500, 500), np.arange(0, 3500, 500))
        Y = y.shape[0]
        X = y.shape[1]
        grid = gridpp.Grid(y, x, np.zeros(x.shape), np.zeros(x.shape),
                           gridpp.Cartesian)
        background = np.random.rand(Y, X) * 0

        obs = np.array([10, 20, 30])
        x_o = np.array([1000, 2000, 3000])
        y_o = np.array([1000, 2000, 3000])
        N = len(obs)
        points = gridpp.Points(y_o, x_o, np.zeros(N), np.zeros(N),
                               gridpp.Cartesian)

        background_o = gridpp.nearest(grid, points, background)

        ratios = np.ones(N)
        k = 0
        ii = np.arange(N).astype('int') != k
        points_cv = gridpp.Points(y_o[ii], x_o[ii], np.zeros(N - 1),
                                  np.zeros(N - 1), gridpp.Cartesian)
        structure = gridpp.BarnesStructure(1000, 0)
        structure_cv = gridpp.CrossValidation(structure, 750)

        analysis = gridpp.optimal_interpolation(grid, background, points_cv,
                                                obs[ii], ratios[ii],
                                                background_o[ii], structure,
                                                100)
        analysis_cv = gridpp.optimal_interpolation(points, background_o,
                                                   points, obs, ratios,
                                                   background_o, structure_cv,
                                                   100)

        self.assertAlmostEqual(
            gridpp.nearest(grid, points, analysis)[k], analysis_cv[k])
Ejemplo n.º 6
0
 def test_simple_1d(self):
     N = 3
     y = [[0, 0, 0]]
     x = [[0, 2500, 10000]]
     grid = gridpp.Grid(y, x, y, y, gridpp.Cartesian)
     points = gridpp.Points([0], [2500], [0], [0], gridpp.Cartesian)
     pratios = [0.1]
     structure = gridpp.BarnesStructure(2500)
     pobs = [1]
     background = np.zeros([1, N])
     pbackground = [0]
     max_points = 10
     output = gridpp.optimal_interpolation(grid, background, points, pobs,
                                           pratios, pbackground, structure,
                                           max_points)
     np.testing.assert_array_almost_equal(
         output,
         np.array([[np.exp(-0.5) / 1.1, 1 / 1.1,
                    np.exp(-0.5 * 9) / 1.1]]))
Ejemplo n.º 7
0
def horizontal_oi(geo,
                  background,
                  observations,
                  gelevs,
                  glafs,
                  hlength=10000.,
                  vlength=10000.,
                  wlength=0.5,
                  elev_gradient=0,
                  structure_function="Barnes",
                  land_only=False,
                  max_locations=50,
                  epsilon=0.5,
                  minvalue=None,
                  maxvalue=None,
                  interpol="bilinear"):

    if gridpp is None:
        raise Exception("You need gridpp to perform OI")

    glats = geo.lats
    glons = geo.lons

    def obs2vectors(my_obs):
        return my_obs.lons, my_obs.lats, my_obs.stids, my_obs.elevs, \
               my_obs.values, my_obs.cis, my_obs.lafs

    vectors = np.vectorize(obs2vectors)
    lons, lats, stids, elevs, values, pci, lafs = vectors(observations)

    glats = np.transpose(glats)
    glons = np.transpose(glons)
    background = np.transpose(background)
    gelevs = np.transpose(gelevs)
    glafs = np.transpose(glafs)

    bgrid = gridpp.Grid(glats, glons, gelevs)
    points = gridpp.Points(lats, lons, elevs)
    if interpol == "bilinear":
        pbackground = gridpp.bilinear(bgrid, points, background)
    elif interpol == "nearest":
        pbackground = gridpp.nearest(bgrid, points, background, elev_gradient)
    else:
        raise NotImplementedError
    variance_ratios = np.full(points.size(), epsilon)

    if structure_function == "Barnes":
        # No land/sea weight when land_only = True
        if land_only:
            wlength = 0.
        structure = gridpp.BarnesStructure(hlength, vlength, wlength)
    else:
        raise NotImplementedError

    field = gridpp.optimal_interpolation(bgrid, background, points, values,
                                         variance_ratios, pbackground,
                                         structure, max_locations)
    field = np.asarray(field)
    if minvalue is not None:
        field[field < minvalue] = minvalue
    if maxvalue is not None:
        field[field > maxvalue] = maxvalue
    if land_only:
        no_land = np.where(glafs == 0)
        field[no_land] = background[no_land]
    return np.transpose(field)
Ejemplo n.º 8
0
# Downscaling
gradient = -0.0065
background = gridpp.simple_gradient(bgrid_2500m, bgrid, background_2500m, gradient)

points = gridpp.Points(obs_lats[index_valid_obs], obs_lons[index_valid_obs], obs_elevs[index_valid_obs])
pbackground = gridpp.bilinear(bgrid, points, background)

variance_ratios = np.full(points.size(), 0.1)

h = 100000
v = 200
structure = gridpp.BarnesStructure(h, v)

max_points = 50

analysis = gridpp.optimal_interpolation(bgrid, background, points,
        obs[index_valid_obs], variance_ratios, pbackground, structure, max_points)


# Plotting the increments
diff = analysis - background
mpl.pcolormesh(blons, blats, diff, cmap="RdBu_r", vmin=-2, vmax=2)
mpl.xlim(0, 35)
mpl.ylim(55, 75)
mpl.gca().set_aspect(2)
cb = mpl.colorbar()
cb.set_label(r"Increment ($\degree C$)")
mpl.savefig("analysis_increment.png", bbox_inches='tight', dpi=125)
mpl.clf()

# Ensemble mode
with netCDF4.Dataset('analysis.nc', 'r') as file: