Ejemplo n.º 1
0
def get_viscous_timestep(discr, state):
    """Routine returns the the node-local maximum stable viscous timestep.

    Parameters
    ----------
    discr: grudge.eager.EagerDGDiscretization

        the discretization to use

    state: :class:`~mirgecom.gas_model.FluidState`

        Full fluid conserved and thermal state

    Returns
    -------
    :class:`~meshmode.dof_array.DOFArray`

        The maximum stable timestep at each node.
    """
    from grudge.dt_utils import characteristic_lengthscales

    length_scales = characteristic_lengthscales(state.array_context, discr)

    mu = 0
    d_alpha_max = 0
    if state.is_viscous:
        mu = state.viscosity
        d_alpha_max = \
            get_local_max_species_diffusivity(
                state.array_context,
                state.species_diffusivity
            )

    return (length_scales / (state.wavespeed +
                             ((mu + d_alpha_max) / length_scales)))
Ejemplo n.º 2
0
def get_viscous_timestep(discr, eos, cv):
    """Routine returns the the node-local maximum stable viscous timestep.

    Parameters
    ----------
    discr: grudge.eager.EagerDGDiscretization
        the discretization to use
    eos: :class:`~mirgecom.eos.GasEOS`
        A gas equation of state
    cv: :class:`~mirgecom.fluid.ConservedVars`
        Fluid solution

    Returns
    -------
    :class:`~meshmode.dof_array.DOFArray`
        The maximum stable timestep at each node.
    """
    from grudge.dt_utils import characteristic_lengthscales
    from mirgecom.fluid import compute_wavespeed

    length_scales = characteristic_lengthscales(cv.array_context, discr)

    mu = 0
    d_alpha_max = 0
    transport = eos.transport_model()
    if transport:
        mu = transport.viscosity(eos, cv)
        d_alpha_max = \
            get_local_max_species_diffusivity(
                cv.array_context, discr,
                transport.species_diffusivity(eos, cv)
            )

    return (length_scales / (compute_wavespeed(eos, cv) +
                             ((mu + d_alpha_max) / length_scales)))
Ejemplo n.º 3
0
def test_viscous_timestep(actx_factory, dim, mu, vel):
    """Test timestep size."""
    actx = actx_factory()
    nel_1d = 4

    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=(1.0, ) * dim,
                                      b=(2.0, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 1

    discr = EagerDGDiscretization(actx, mesh, order=order)
    zeros = discr.zeros(actx)
    ones = zeros + 1.0

    velocity = make_obj_array([zeros + vel for _ in range(dim)])

    massval = 1
    mass = massval * ones

    # I *think* this energy should yield c=1.0
    energy = zeros + 1.0 / (1.4 * .4)
    mom = mass * velocity
    species_mass = None

    cv = make_conserved(dim,
                        mass=mass,
                        energy=energy,
                        momentum=mom,
                        species_mass=species_mass)

    from grudge.dt_utils import characteristic_lengthscales
    chlen = characteristic_lengthscales(actx, discr)
    from grudge.op import nodal_min
    chlen_min = nodal_min(discr, "vol", chlen)

    mu = mu * chlen_min
    if mu < 0:
        mu = 0
        tv_model = None
    else:
        tv_model = SimpleTransport(viscosity=mu)

    eos = IdealSingleGas()
    gas_model = GasModel(eos=eos, transport=tv_model)
    fluid_state = make_fluid_state(cv, gas_model)

    from mirgecom.viscous import get_viscous_timestep
    dt_field = get_viscous_timestep(discr, fluid_state)

    speed_total = fluid_state.wavespeed
    dt_expected = chlen / (speed_total + (mu / chlen))

    error = (dt_expected - dt_field) / dt_expected
    assert actx.to_numpy(discr.norm(error, np.inf)) == 0
Ejemplo n.º 4
0
    def estimate_rk4_timestep(self, actx, dcoll, **kwargs):
        r"""Estimate the largest stable timestep for an RK4 method.

        :arg actx: a :class:`arraycontext.ArrayContext`.
        :arg dcoll: a :class:`grudge.discretization.DiscretizationCollection`.
        :arg \**kwargs: Optional keyword arguments for determining the
            max characteristic velocity of the operator. These are passed
            to :meth:`max_characteristic_velocity`.
        """
        from grudge.dt_utils import characteristic_lengthscales
        import grudge.op as op

        wavespeeds = self.max_characteristic_velocity(actx, **kwargs)
        local_timesteps = (characteristic_lengthscales(actx, dcoll) /
                           wavespeeds)

        return op.nodal_min(dcoll, "vol", local_timesteps)
Ejemplo n.º 5
0
def get_inviscid_timestep(discr, eos, cv):
    """Return node-local stable timestep estimate for an inviscid fluid.

    The maximum stable timestep is computed from the acoustic wavespeed.

    Parameters
    ----------
    discr: grudge.eager.EagerDGDiscretization
        the discretization to use
    eos: mirgecom.eos.GasEOS
        Implementing the pressure and temperature functions for
        returning pressure and temperature as a function of the state q.
    cv: :class:`~mirgecom.fluid.ConservedVars`
        Fluid solution
    Returns
    -------
    class:`~meshmode.dof_array.DOFArray`
        The maximum stable timestep at each node.
    """
    from grudge.dt_utils import characteristic_lengthscales
    from mirgecom.fluid import compute_wavespeed
    return (characteristic_lengthscales(cv.array_context, discr) /
            compute_wavespeed(eos, cv))
Ejemplo n.º 6
0
def get_inviscid_timestep(discr, state):
    """Return node-local stable timestep estimate for an inviscid fluid.

    The maximum stable timestep is computed from the acoustic wavespeed.

    Parameters
    ----------
    discr: grudge.eager.EagerDGDiscretization

        the discretization to use

    state: :class:`~mirgecom.gas_model.FluidState`

        Full fluid conserved and thermal state

    Returns
    -------
    class:`~meshmode.dof_array.DOFArray`

        The maximum stable timestep at each node.
    """
    from grudge.dt_utils import characteristic_lengthscales
    return (characteristic_lengthscales(state.array_context, discr) /
            state.wavespeed)
Ejemplo n.º 7
0
def estimate_rk4_timestep(actx, dcoll, c):
    from grudge.dt_utils import characteristic_lengthscales

    local_dts = characteristic_lengthscales(actx, dcoll) / c

    return op.nodal_min(dcoll, "vol", local_dts)
Ejemplo n.º 8
0
def main(use_profiling=False, use_logmgr=False, lazy_eval: bool = False):
    """Drive the example."""
    cl_ctx = cl.create_some_context()

    logmgr = initialize_logmgr(use_logmgr, filename="wave.sqlite", mode="wu")

    if use_profiling:
        if lazy_eval:
            raise RuntimeError("Cannot run lazy with profiling.")
        queue = cl.CommandQueue(
            cl_ctx, properties=cl.command_queue_properties.PROFILING_ENABLE)
        actx = PyOpenCLProfilingArrayContext(
            queue,
            allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)))
    else:
        queue = cl.CommandQueue(cl_ctx)
        if lazy_eval:
            actx = PytatoPyOpenCLArrayContext(queue)
        else:
            actx = PyOpenCLArrayContext(
                queue,
                allocator=cl_tools.MemoryPool(
                    cl_tools.ImmediateAllocator(queue)))

    dim = 2
    nel_1d = 16
    from meshmode.mesh.generation import generate_regular_rect_mesh

    mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                      b=(0.5, ) * dim,
                                      nelements_per_axis=(nel_1d, ) * dim)

    order = 3

    discr = EagerDGDiscretization(actx, mesh, order=order)

    current_cfl = 0.485
    wave_speed = 1.0
    from grudge.dt_utils import characteristic_lengthscales
    nodal_dt = characteristic_lengthscales(actx, discr) / wave_speed
    from grudge.op import nodal_min
    dt = actx.to_numpy(current_cfl * nodal_min(discr, "vol", nodal_dt))[()]

    print("%d elements" % mesh.nelements)

    fields = flat_obj_array(bump(actx, discr),
                            [discr.zeros(actx) for i in range(discr.dim)])

    if logmgr:
        logmgr_add_cl_device_info(logmgr, queue)
        logmgr_add_device_memory_usage(logmgr, queue)

        logmgr.add_watches(["step.max", "t_step.max", "t_log.max"])

        try:
            logmgr.add_watches(
                ["memory_usage_python.max", "memory_usage_gpu.max"])
        except KeyError:
            pass

        if use_profiling:
            logmgr.add_watches(["multiply_time.max"])

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

    vis = make_visualizer(discr)

    def rhs(t, w):
        return wave_operator(discr, c=wave_speed, w=w)

    compiled_rhs = actx.compile(rhs)

    t = 0
    t_final = 1
    istep = 0
    while t < t_final:
        if logmgr:
            logmgr.tick_before()

        fields = thaw(freeze(fields, actx), actx)
        fields = rk4_step(fields, t, dt, compiled_rhs)

        if istep % 10 == 0:
            if use_profiling:
                print(actx.tabulate_profiling_data())
            print(istep, t, actx.to_numpy(discr.norm(fields[0], np.inf)))
            vis.write_vtk_file("fld-wave-%04d.vtu" % istep, [
                ("u", fields[0]),
                ("v", fields[1:]),
            ],
                               overwrite=True)

        t += dt
        istep += 1

        if logmgr:
            set_dt(logmgr, dt)
            logmgr.tick_after()
Ejemplo n.º 9
0
def main(snapshot_pattern="wave-mpi-{step:04d}-{rank:04d}.pkl", restart_step=None,
         use_profiling=False, use_logmgr=False, actx_class=PyOpenCLArrayContext):
    """Drive the example."""
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    num_parts = comm.Get_size()

    logmgr = initialize_logmgr(use_logmgr,
        filename="wave-mpi.sqlite", mode="wu", mpi_comm=comm)
    if use_profiling:
        queue = cl.CommandQueue(cl_ctx,
            properties=cl.command_queue_properties.PROFILING_ENABLE)
        actx = actx_class(queue,
            allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)),
            logmgr=logmgr)
    else:
        queue = cl.CommandQueue(cl_ctx)
        actx = actx_class(queue,
            allocator=cl_tools.MemoryPool(cl_tools.ImmediateAllocator(queue)))

    if restart_step is None:

        from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
        mesh_dist = MPIMeshDistributor(comm)

        dim = 2
        nel_1d = 16

        if mesh_dist.is_mananger_rank():
            from meshmode.mesh.generation import generate_regular_rect_mesh
            mesh = generate_regular_rect_mesh(
                a=(-0.5,)*dim, b=(0.5,)*dim,
                nelements_per_axis=(nel_1d,)*dim)

            print("%d elements" % mesh.nelements)
            part_per_element = get_partition_by_pymetis(mesh, num_parts)
            local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)

            del mesh

        else:
            local_mesh = mesh_dist.receive_mesh_part()

        fields = None

    else:
        from mirgecom.restart import read_restart_data
        restart_data = read_restart_data(
            actx, snapshot_pattern.format(step=restart_step, rank=rank)
        )
        local_mesh = restart_data["local_mesh"]
        nel_1d = restart_data["nel_1d"]
        assert comm.Get_size() == restart_data["num_parts"]

    order = 3

    discr = EagerDGDiscretization(actx, local_mesh, order=order,
                                  mpi_communicator=comm)

    current_cfl = 0.485
    wave_speed = 1.0
    from grudge.dt_utils import characteristic_lengthscales
    dt = current_cfl * characteristic_lengthscales(actx, discr) / wave_speed

    from grudge.op import nodal_min
    dt = nodal_min(discr, "vol", dt)

    t_final = 1

    if restart_step is None:
        t = 0
        istep = 0

        fields = flat_obj_array(
            bump(actx, discr),
            [discr.zeros(actx) for i in range(discr.dim)]
            )

    else:
        t = restart_data["t"]
        istep = restart_step
        assert istep == restart_step
        restart_fields = restart_data["fields"]
        old_order = restart_data["order"]
        if old_order != order:
            old_discr = EagerDGDiscretization(actx, local_mesh, order=old_order,
                                              mpi_communicator=comm)
            from meshmode.discretization.connection import make_same_mesh_connection
            connection = make_same_mesh_connection(actx, discr.discr_from_dd("vol"),
                                                   old_discr.discr_from_dd("vol"))
            fields = connection(restart_fields)
        else:
            fields = restart_fields

    if logmgr:
        logmgr_add_cl_device_info(logmgr, queue)
        logmgr_add_device_memory_usage(logmgr, queue)

        logmgr.add_watches(["step.max", "t_step.max", "t_log.max"])

        try:
            logmgr.add_watches(["memory_usage_python.max", "memory_usage_gpu.max"])
        except KeyError:
            pass

        if use_profiling:
            logmgr.add_watches(["multiply_time.max"])

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

    vis = make_visualizer(discr)

    def rhs(t, w):
        return wave_operator(discr, c=wave_speed, w=w)

    compiled_rhs = actx.compile(rhs)

    while t < t_final:
        if logmgr:
            logmgr.tick_before()

        # restart must happen at beginning of step
        if istep % 100 == 0 and (
                # Do not overwrite the restart file that we just read.
                istep != restart_step):
            from mirgecom.restart import write_restart_file
            write_restart_file(
                actx, restart_data={
                    "local_mesh": local_mesh,
                    "order": order,
                    "fields": fields,
                    "t": t,
                    "step": istep,
                    "nel_1d": nel_1d,
                    "num_parts": num_parts},
                filename=snapshot_pattern.format(step=istep, rank=rank),
                comm=comm
            )

        if istep % 10 == 0:
            print(istep, t, discr.norm(fields[0]))
            vis.write_parallel_vtk_file(
                comm,
                "fld-wave-mpi-%03d-%04d.vtu" % (rank, istep),
                [
                    ("u", fields[0]),
                    ("v", fields[1:]),
                ], overwrite=True
            )

        fields = thaw(freeze(fields, actx), actx)
        fields = rk4_step(fields, t, dt, compiled_rhs)

        t += dt
        istep += 1

        if logmgr:
            set_dt(logmgr, dt)
            logmgr.tick_after()

    final_soln = discr.norm(fields[0])
    assert np.abs(final_soln - 0.04409852463947439) < 1e-14