Ejemplo n.º 1
0
def mocsy_3d_getOmA(tsal, ttemp, tdic, tta):
    tsra = np.ravel(tsal)
    ttera = np.ravel(ttemp)
    ttara = np.ravel(tta) * 1e-3
    tdra = np.ravel(tdic) * 1e-3
    tzero = np.zeros_like(tsra)
    tpressure = np.zeros_like(tsra)
    tpressure[:] = 1
    tzero = tpressure * 0

    tsra_psu = tsra * 35 / 35.16504
    ttera_is = gsw.t_from_CT(tsra, ttera, tzero)

    response_tup = mocsy.mvars(temp=ttera_is,
                               sal=tsra_psu,
                               alk=ttara,
                               dic=tdra,
                               sil=tzero,
                               phos=tzero,
                               patm=tpressure,
                               depth=tzero,
                               lat=tzero,
                               optcon='mol/m3',
                               optt='Tinsitu',
                               optp='m',
                               optb='l10',
                               optk1k2='m10',
                               optkf='dg',
                               optgas='Pinsitu')
    pH, pco2, fco2, co2, hco3, co3, OmegaA, OmegaC, BetaD, DENis, p, Tis = response_tup

    OmegaAR = OmegaA.reshape(40, 898, 398)
    return OmegaAR
Ejemplo n.º 2
0
def oned_moxy(tsal, ttemp, tdic, tta, pres_atm, depth_this):

    size_box = np.shape(tdic)
    size_0 = size_box[0]
    size_1= size_box[1]
    size_2 = size_box[2]


    tsra = np.ravel(tsal)
    ttera = np.ravel(ttemp)
    ttara = np.ravel(tta) * 1e-3
    tdra = np.ravel(tdic) * 1e-3
    tzero = np.zeros_like(tsra)
    tpressure = np.zeros_like(tsra)
    tpressure[:] = pres_atm
    tdepth = np.ravel(depth_this)
    tzero = tpressure * 0 
        
    tsra_psu = tsra*35/35.16504
    ttera_is = gsw.t_from_CT(tsra,ttera,tzero)
    print('beginning mocsy')
    response_tup = mocsy.mvars(temp=ttera_is, sal=tsra_psu, alk=ttara, dic=tdra, 
                       sil=tzero, phos=tzero, patm=tpressure, depth=tdepth, lat=tzero, 
                        optcon='mol/m3', optt='Tinsitu', optp='m',
                        optb = 'l10', optk1k2='m10', optkf = 'dg', optgas = 'Pinsitu')
    pH,pco2,fco2,co2,hco3,co3,OmegaA,OmegaC,BetaD,DENis,p,Tis = response_tup
    print('finished mocsy')

    pHr = pH.reshape(size_0,size_1,size_2)
    OmAr = OmegaA.reshape(size_0,size_1,size_2)
    pco2r = pco2.reshape(size_0,size_1,size_2)
    
    return pHr, OmAr, pco2r
Ejemplo n.º 3
0
def compute_potdens(ds, saltname='SALT', tempname='THETA'):
    import gsw
    """ compute the potential density
    """
    # compute the Conservative Temperature from the model's potential temperature
    temp = ds[tempname].transpose(*('time', 'k', 'face', 'j', 'i'))
    salt = ds[tempname].transpose(*('time', 'k', 'face', 'j', 'i'))
    CT = gsw.CT_from_pt(salt, temp)
    z, lat = xr.broadcast(ds['Z'], ds['YC'])
    z = z.transpose(*('k', 'face', 'j', 'i'))
    lat = lat.transpose(*('k', 'face', 'j', 'i'))
    # compute pressure from depth
    p = gsw.p_from_z(z, lat)
    # compute in-situ temperature
    T = gsw.t_from_CT(salt, CT, p)
    # compute potential density
    rho = gsw.pot_rho_t_exact(salt, T, p, 0.)
    # create new dataarray
    darho = xr.full_like(temp, 0.)
    darho = darho.load().chunk({'time': 1, 'face': 1})
    darho.name = 'RHO'
    darho.attrs['long_name'] = 'Potential Density ref at 0m'
    darho.attrs['standard_name'] = 'RHO'
    darho.attrs['units'] = 'kg/m3'
    darho.values = rho
    # filter special value
    darho = darho.where(darho > 1000)
    darho = darho.assign_coords(XC=ds['XC'], YC=ds['YC'], Z=ds['Z'])
    return darho
Ejemplo n.º 4
0
def OmA_2D(grid,carp):
    tsal = grid['vosaline'][0,0,:,:]
    ttemp = grid['votemper'][0,0,:,:]
    tdic = carp['dissolved_inorganic_carbon'][0,0,:,:]
    tta = carp['total_alkalinity'][0,0,:,:]

    tsra = np.ravel(tsal)
    ttera = np.ravel(ttemp)
    ttara = np.ravel(tta) * 1e-3
    tdra = np.ravel(tdic) * 1e-3
    tzero = np.zeros_like(tsra)
    tpressure = np.zeros_like(tsra)
    tpressure[:] =1
    tzero = tpressure * 0 
        
    tsra_psu = tsra*35/35.16504
    ttera_is = gsw.t_from_CT(tsra,ttera,tzero)

    response_tup = mocsy.mvars(temp=ttera_is, sal=tsra_psu, alk=ttara, dic=tdra, 
                       sil=tzero, phos=tzero, patm=tpressure, depth=tzero, lat=tzero, 
                        optcon='mol/m3', optt='Tinsitu', optp='m',
                        optb = 'l10', optk1k2='m10', optkf = 'dg', optgas = 'Pinsitu')
    pH,pco2,fco2,co2,hco3,co3,OmegaA,OmegaC,BetaD,DENis,p,Tis = response_tup

    pHr = pH.reshape(898,398)
    OmAr = OmegaA.reshape(898,398)
    OmCr = OmegaC.reshape(898,398)
    pco2r = pco2.reshape(898,398)
    
    return pHr, OmAr, OmCr, pco2r
Ejemplo n.º 5
0
def tsappen_ct(p, **kwargs):
    '''
    add potential density contours to the current axis
    '''

    ax = kwargs.get('axis', plt.gca())
    pref = kwargs.get('pref', 0)
    levels = kwargs.get('levels', np.arange(20, 31))
    colors = kwargs.get('colors', 'k')

    keys = ['axis', 'pref', 'levels', 'colors']
    for key in keys:
        if key in kwargs:
            kwargs.pop(key)

    xlim = ax.get_xlim()
    ylim = ax.get_ylim()

    xax = np.arange(np.min(xlim) - 0.01, np.max(xlim) + 0.01, 0.01)
    yax = np.arange(np.min(ylim) - 0.01, np.max(ylim) + 0.01, 0.01)
    sa, ct = np.meshgrid(xax, yax)

    # pden = sw.pden(x, y, pref, 0)-1000
    t = gsw.t_from_CT(sa, ct, p)
    pden = gsw.pot_rho_t_exact(sa, t, pref, 0) - 1000
    c = plt.contour(sa, ct, pden, levels, colors=colors, **kwargs)
    plt.clabel(c, fmt='%2.1f')
Ejemplo n.º 6
0
def potential_to_in_situ_temperature(dsPotTemp, dsSalin):
    z = dsPotTemp.z.values
    lat = numpy.maximum(dsPotTemp.lat.values, -80.)
    lon = dsPotTemp.lon.values

    if len(lat.shape) == 1:
        lon, lat = numpy.meshgrid(lon, lat)

    nz = len(z)
    ny, nx = lat.shape

    if 'time' in dsPotTemp.dims:
        nt = dsPotTemp.sizes['time']
        T = numpy.nan * numpy.ones((nt, nz, ny, nx))
        for zIndex in range(nz):
            pressure = gsw.p_from_z(z[zIndex], lat)
            for tIndex in range(nt):
                pt = dsPotTemp.temperature[tIndex, zIndex, :, :].values
                salin = dsSalin.salinity[tIndex, zIndex, :, :].values
                mask = numpy.logical_and(numpy.isfinite(pt),
                                         numpy.isfinite(salin))
                SA = gsw.SA_from_SP(salin[mask], pressure[mask], lon[mask],
                                    lat[mask])
                TSlice = T[tIndex, zIndex, :, :]
                CT = gsw.CT_from_pt(SA, pt[mask])
                TSlice[mask] = gsw.t_from_CT(SA, CT, pressure[mask])
                T[tIndex, zIndex, :, :] = TSlice
    else:
        T = numpy.nan * numpy.ones((nz, ny, nx))
        for zIndex in range(nz):
            pressure = gsw.p_from_z(z[zIndex], lat)
            pt = dsPotTemp.temperature[zIndex, :, :].values
            salin = dsSalin.salinity[zIndex, :, :].values
            mask = numpy.logical_and(numpy.isfinite(pt), numpy.isfinite(salin))
            SA = gsw.SA_from_SP(salin[mask], pressure[mask], lon[mask],
                                lat[mask])
            TSlice = T[zIndex, :, :]
            CT = gsw.CT_from_pt(SA, pt[mask])
            TSlice[mask] = gsw.t_from_CT(SA, CT, pressure[mask])
            T[zIndex, :, :] = TSlice

    dsTemp = dsPotTemp.drop('temperature')
    dsTemp['temperature'] = (dsPotTemp.temperature.dims, T)
    dsTemp['temperature'].attrs = dsPotTemp.temperature.attrs

    return dsTemp
Ejemplo n.º 7
0
def potential_density(salt_PSU, temp_C, pres_db, lat, lon, pres_ref=0):
    """
    Calculate density from glider measurements of salinity and temperature.

    The Basestation calculates density from absolute salinity and potential
    temperature. This function is a wrapper for this functionality, where
    potential temperature and absolute salinity are calculated first.
    Note that a reference pressure of 0 is used by default.

    Parameters
    ----------
    salt_PSU : array, dtype=float, shape=[n, ]
        practical salinty
    temp_C : array, dtype=float, shape=[n, ]
    temperature in deg C
    pres_db : array, dtype=float, shape=[n, ]
        pressure in decibar
    lat : array, dtype=float, shape=[n, ]
        latitude in degrees north
    lon : array, dtype=float, shape=[n, ]
        longitude in degrees east

    Returns
    -------
    potential_density : array, dtype=float, shape=[n, ]


    Note
    ----
    Using seawater.dens does not yield the same results as this function. We
    get very close results to what the SeaGlider Basestation returns with this
    function. The difference of this function with the basestation is on
    average ~ 0.003 kg/m3
    """

    try:
        import gsw

        salt_abs = gsw.SA_from_SP(salt_PSU, pres_db, lon, lat)
        temp_pot = gsw.t_from_CT(salt_abs, temp_C, pres_db)
        pot_dens = gsw.pot_rho_t_exact(salt_abs, temp_pot, pres_db, pres_ref)
    except ImportError:
        import seawater as sw

        pot_dens = sw.pden(salt_PSU, temp_C, pres_db, pres_ref)

    pot_dens = transfer_nc_attrs(
        getframe(),
        temp_C,
        pot_dens,
        'potential_density',
        units='kg/m3',
        comment='',
        standard_name='potential_density',
    )
    return pot_dens
Ejemplo n.º 8
0
def OmA_3D(grid, carp):
    tsal = grid['model_output']['SAL'][:, :, :]
    ttemp = grid['model_output']['TEMP'][:, :, :]
    tdic = carp['model_output']['DIC'][:, :, :]
    tta = carp['model_output']['TA'][:, :, :]

    test_LO = nc.Dataset(
        '/results/forcing/LiveOcean/boundary_conditions/LiveOcean_v201905_y2018m01d01.nc'
    )
    zlevels = (test_LO['deptht'][:])

    depths = np.zeros([40, 898, 398])

    for j in range(0, 898):
        for i in range(0, 398):
            depths[:, j, i] = zlevels

    tdepths = np.ravel(depths)
    tsra = np.ravel(tsal)
    ttera = np.ravel(ttemp)
    ttara = np.ravel(tta) * 1e-3
    tdra = np.ravel(tdic) * 1e-3
    tzero = np.zeros_like(tsra)
    tpressure = np.zeros_like(tsra)
    tpressure[:] = 1
    tzero = tpressure * 0

    tsra_psu = tsra * 35 / 35.16504
    ttera_is = gsw.t_from_CT(tsra, ttera, tzero)

    response_tup = mocsy.mvars(temp=ttera_is,
                               sal=tsra_psu,
                               alk=ttara,
                               dic=tdra,
                               sil=tzero,
                               phos=tzero,
                               patm=tpressure,
                               depth=tdepths,
                               lat=tzero,
                               optcon='mol/m3',
                               optt='Tinsitu',
                               optp='m',
                               optb='l10',
                               optk1k2='m10',
                               optkf='dg',
                               optgas='Pinsitu')
    pH, pco2, fco2, co2, hco3, co3, OmegaA, OmegaC, BetaD, DENis, p, Tis = response_tup

    pHr = pH.reshape(40, 898, 398)
    OmAr = OmegaA.reshape(40, 898, 398)
    OmCr = OmegaC.reshape(40, 898, 398)
    pco2r = pco2.reshape(40, 898, 398)

    return pHr, OmAr, OmCr, pco2r
Ejemplo n.º 9
0
def OmA_3D(grid, carp):
    tsal = grid['vosaline'][0, :, :, :]
    ttemp = grid['votemper'][0, :, :, :]
    tdic = carp['dissolved_inorganic_carbon'][0, :, :, :]
    tta = carp['total_alkalinity'][0, :, :, :]

    test_LO = nc.Dataset(
        '/results/forcing/LiveOcean/boundary_conditions/LiveOcean_v201905_y2018m01d01.nc'
    )
    zlevels = (test_LO['deptht'][:])

    depths = np.zeros([40, 898, 398])

    for j in range(0, 898):
        for i in range(0, 398):
            depths[:, j, i] = zlevels

    tdepths = np.ravel(depths)
    tsra = np.ravel(tsal)
    ttera = np.ravel(ttemp)
    ttara = np.ravel(tta) * 1e-3
    tdra = np.ravel(tdic) * 1e-3
    tzero = np.zeros_like(tsra)
    tpressure = np.zeros_like(tsra)
    tpressure[:] = 1
    tzero = tpressure * 0

    tsra_psu = tsra * 35 / 35.16504
    ttera_is = gsw.t_from_CT(tsra, ttera, tzero)

    response_tup = mocsy.mvars(temp=ttera_is,
                               sal=tsra_psu,
                               alk=ttara,
                               dic=tdra,
                               sil=tzero,
                               phos=tzero,
                               patm=tpressure,
                               depth=tdepths,
                               lat=tzero,
                               optcon='mol/m3',
                               optt='Tinsitu',
                               optp='m',
                               optb='l10',
                               optk1k2='m10',
                               optkf='dg',
                               optgas='Pinsitu')
    pH, pco2, fco2, co2, hco3, co3, OmegaA, OmegaC, BetaD, DENis, p, Tis = response_tup

    BetaDr = BetaD.reshape(40, 898, 398)

    return BetaDr
Ejemplo n.º 10
0
def oned_moxy(tsal, ttemp, tdic, tta, pres_atm, depth_this):
    import sys
    sys.path.append('/data/tjarniko/mocsy')
    import mocsy
    import numpy as np
    import gsw

    size_box = np.shape(tdic)
    size_0 = size_box[0]
    size_1 = size_box[1]

    tsra = np.ravel(tsal)
    ttera = np.ravel(ttemp)
    ttara = np.ravel(tta) * 1e-3
    tdra = np.ravel(tdic) * 1e-3
    tzero = np.zeros_like(tsra)
    tpressure = np.zeros_like(tsra)
    #tdepth = np.zeros_like(tsra)
    tpressure[:] = pres_atm
    tdepth = np.ravel(depth_this)
    tzero = tpressure * 0

    tsra_psu = tsra * 35 / 35.16504
    ttera_is = gsw.t_from_CT(tsra, ttera, tzero)

    response_tup = mocsy.mvars(temp=ttera_is,
                               sal=tsra_psu,
                               alk=ttara,
                               dic=tdra,
                               sil=tzero,
                               phos=tzero,
                               patm=tpressure,
                               depth=tdepth,
                               lat=tzero,
                               optcon='mol/m3',
                               optt='Tinsitu',
                               optp='m',
                               optb='l10',
                               optk1k2='m10',
                               optkf='dg',
                               optgas='Pinsitu')
    pH, pco2, fco2, co2, hco3, co3, OmegaA, OmegaC, BetaD, DENis, p, Tis = response_tup

    pHr = pH.reshape(size_0, size_1)
    OmAr = OmegaA.reshape(size_0, size_1)
    pco2r = pco2.reshape(size_0, size_1)

    return pHr, OmAr, pco2r
Ejemplo n.º 11
0
def surface_maps(carp, grid, stns, ddmmmyy, rdir, humandate, dss_sig):

    tsal = grid.variables['vosaline'][0, 0, :, :]
    ttemp = grid.variables['votemper'][0, 0, :, :]
    tdic = carp.variables['dissolved_inorganic_carbon'][0, 0, :, :]
    tta = carp.variables['total_alkalinity'][0, 0, :, :]

    tsra = np.ravel(tsal)
    ttera = np.ravel(ttemp)
    ttara = np.ravel(tta) * 1e-3
    tdra = np.ravel(tdic) * 1e-3
    tzero = np.zeros_like(tsra)
    tpressure = np.zeros_like(tsra)
    tpressure[:] = 1
    tzero = tpressure * 0

    tsra_psu = tsra * 35 / 35.16504
    ttera_is = gsw.t_from_CT(tsra, ttera, tzero)

    response_tup = mocsy.mvars(temp=ttera_is,
                               sal=tsra_psu,
                               alk=ttara,
                               dic=tdra,
                               sil=tzero,
                               phos=tzero,
                               patm=tpressure,
                               depth=tzero,
                               lat=tzero,
                               optcon='mol/m3',
                               optt='Tinsitu',
                               optp='m',
                               optb='l10',
                               optk1k2='m10',
                               optkf='dg',
                               optgas='Pinsitu')
    pH, pco2, fco2, co2, hco3, co3, OmegaA, OmegaC, BetaD, DENis, p, Tis = response_tup

    pHr = pH.reshape(898, 398)
    OmA = OmegaA.reshape(898, 398)

    surf_dat = [tsal, tdic, tta, ttemp, pHr, OmA]

    vmins = [25, 1800, 1800, 5, 7.5, 0]
    vmaxs = [32, 2200, 2200, 15, 8.5, 2]
    msk = [0, 0, 0, 0, 1e20, 1e20]
    cl = [
        'salinity psu', 'DIC umol/kg', 'TA umol/kg', 'temp deg C', 'pH',
        'Omega A'
    ]
    t_cmap = [
        cm.cm.haline, cm.cm.matter, cm.cm.matter, cm.cm.thermal, cm.cm.speed,
        cm.cm.curl
    ]

    fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = \
    plt.subplots(figsize=(20, 27) , nrows=2, ncols=3)

    viz_tools.set_aspect(ax1)
    viz_tools.set_aspect(ax2)
    viz_tools.set_aspect(ax3)
    viz_tools.set_aspect(ax4)
    viz_tools.set_aspect(ax5)
    viz_tools.set_aspect(ax6)

    i = 0
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, msk[i])
    tcmap = t_cmap[i]
    mesh = ax1.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax1)
    cbar.set_label(cl[i], fontsize=20)

    i = 1
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, msk[i])
    tcmap = t_cmap[i]
    mesh = ax2.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax2)
    cbar.set_label(cl[i], fontsize=20)

    i = 2
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, msk[i])
    tcmap = t_cmap[i]
    mesh = ax3.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax3)
    cbar.set_label(cl[i], fontsize=20)

    i = 3
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, msk[i])
    tcmap = t_cmap[i]
    mesh = ax4.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax4)
    cbar.set_label(cl[i], fontsize=20)

    i = 4
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, msk[i])
    tcmap = t_cmap[i]
    mesh = ax5.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax5)
    cbar.set_label(cl[i], fontsize=20)

    i = 5
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, msk[i])
    tcmap = t_cmap[i]
    mesh = ax6.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax6)
    cbar.set_label(cl[i], fontsize=20)

    cols = []
    xs = []
    ys = []
    stn_in = []
    for s in stns:
        col = stns[s]['color']
        x = stns[s]['x']
        y = stns[s]['y']
        stn = stns[s]['code']
        cols.append(col)
        xs.append(x)
        ys.append(y)
        stn_in.append(stn)

    for w in range(0, len(stns)):
        pat = patches.Rectangle((xs[w], ys[w]),
                                20,
                                20,
                                linewidth=2,
                                edgecolor=cols[w],
                                facecolor='none')
        ax1.add_patch(pat)

    for w in range(0, len(cols)):
        pat = patches.Rectangle((xs[w], ys[w]),
                                20,
                                20,
                                linewidth=2,
                                edgecolor=cols[w],
                                facecolor='none')
        ax2.add_patch(pat)
    for w in range(0, len(cols)):
        pat = patches.Rectangle((xs[w], ys[w]),
                                20,
                                20,
                                linewidth=2,
                                edgecolor=cols[w],
                                facecolor='none')
        ax3.add_patch(pat)
    for w in range(0, len(cols)):
        pat = patches.Rectangle((xs[w], ys[w]),
                                20,
                                20,
                                linewidth=2,
                                edgecolor=cols[w],
                                facecolor='none')
        ax4.add_patch(pat)
    for w in range(0, len(cols)):
        pat = patches.Rectangle((xs[w], ys[w]),
                                20,
                                20,
                                linewidth=2,
                                edgecolor=cols[w],
                                facecolor='none')
        ax5.add_patch(pat)
    for w in range(0, len(cols)):
        pat = patches.Rectangle((xs[w], ys[w]),
                                20,
                                20,
                                linewidth=2,
                                edgecolor=cols[w],
                                facecolor='none')
        ax6.add_patch(pat)

    for i in range(0, len(xs)):
        ax1.text(xs[i] + 22, ys[i] + 3, stn_in[i], weight='bold', fontsize=20)

    #tcmap.set_bad('white')
    st = 'Salish Sea Carbonate Chemistry Map, ' + humandate
    plt.suptitle(st, fontsize=20)

    fname = rdir + f'{ddmmmyy}_map_' + dss_sig + '.png'

    fig.savefig(fname)
    plt.close()
Ejemplo n.º 12
0
def surface_buffer_maps(carp, grid, ddmmmyy, rdir, humandate, dss_sig):

    #retrieve relevant data for mocsy calculation, calculate mocsy
    tsal = grid.variables['vosaline'][0, 0, :, :]
    ttemp = grid.variables['votemper'][0, 0, :, :]
    tdic = carp.variables['dissolved_inorganic_carbon'][0, 0, :, :]
    tta = carp.variables['total_alkalinity'][0, 0, :, :]

    tsra = np.ravel(tsal)
    ttera = np.ravel(ttemp)
    ttara = np.ravel(tta) * 1e-3
    tdra = np.ravel(tdic) * 1e-3
    tzero = np.zeros_like(tsra)
    tpressure = np.zeros_like(tsra)
    tpressure[:] = 1
    tzero = tpressure * 0

    tsra_psu = tsra * 35 / 35.16504
    ttera_is = gsw.t_from_CT(tsra, ttera, tzero)

    response_tup = mocsy.mvars(temp=ttera_is,
                               sal=tsra_psu,
                               alk=ttara,
                               dic=tdra,
                               sil=tzero,
                               phos=tzero,
                               patm=tpressure,
                               depth=tzero,
                               lat=tzero,
                               optcon='mol/m3',
                               optt='Tinsitu',
                               optp='m',
                               optb='l10',
                               optk1k2='m10',
                               optkf='dg',
                               optgas='Pinsitu')
    pH, pco2, fco2, co2, hco3, co3, OmegaA, OmegaC, BetaD, DENis, p, Tis = response_tup

    #calculate borate and ohminus concentration

    bicarb = hco3
    carb = co3
    #calculate borate, Uppstrom, 1974, looked up in mocsy
    scl = tsra / 1.80655
    borat = 0.000232 * scl / 10.811
    hplus = 10**(-1 * pH)
    borat2 = .0000119 * tsra
    ohminus = ttara - bicarb - 2 * carb - borat

    # - calculates quantities needed for Egleston's factors, and the factors themselves

    #Khb is the acidity constant for boric acid - is this an appropriate ref?
    # https://www2.chemistry.msu.edu/courses/cem262/aciddissconst.html
    Khb = 5.81e-10

    S = bicarb + 4 * (carb) + (hplus * borat) / (Khb + hplus) + hplus - ohminus
    P = 2 * (carb) + bicarb
    AlkC = bicarb + 2 * (carb)

    DIC = co2 + bicarb + carb
    #Alk = bicarb + 2*carb + borat - hplus + ohminus

    g_dic = DIC - AlkC**2 / S
    b_dic = (DIC * S - AlkC**2) / AlkC
    w_dic = DIC - (AlkC * P) / bicarb

    g_alk = (AlkC**2 - DIC * S) / AlkC
    b_alk = (AlkC**2 / DIC) - S
    w_alk = AlkC - (DIC * bicarb) / P

    ####
    g_dicR = g_dic.reshape(898, 398) * 1000
    b_dicR = b_dic.reshape(898, 398) * 1000
    w_dicR = w_dic.reshape(898, 398) * -1000
    g_alkR = g_alk.reshape(898, 398) * -1000
    b_alkR = b_alk.reshape(898, 398) * -1000
    w_alkR = w_alk.reshape(898, 398) * 1000

    surf_dat = [g_dicR, b_dicR, w_dicR, g_alkR, b_alkR, w_alkR]
    #ranges from nov 13,2014 hindcast.
    vmins = [-0.7, -0.4, -0.1, -0.4, -0.4, -0.1]
    vmaxs = [0.7, 1, 0.5, 1, 1, 0.4]
    msk = [1.875e+23, 5e+23, 6e+23, 5e+23, 5e+23, 2e+23]

    cl = ['$\gamma_{DIC}$', '$\\beta_{DIC}$', '-$\omega_{DIC}$',\
          '$\gamma_{TA}$', '$\\beta_{TA}$', '-$\omega_{TA}$']

    t_cmap = [cm.cm.oxy, cm.cm.oxy, cm.cm.oxy, cm.cm.oxy, cm.cm.oxy, cm.cm.oxy]
    fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = \
    plt.subplots(figsize=(20, 27) , nrows=2, ncols=3)

    viz_tools.set_aspect(ax1)
    viz_tools.set_aspect(ax2)
    viz_tools.set_aspect(ax3)
    viz_tools.set_aspect(ax4)
    viz_tools.set_aspect(ax5)
    viz_tools.set_aspect(ax6)

    i = 0
    #'g_dicR',
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, 1.875e+23)
    tcmap = t_cmap[i]
    mesh = ax1.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax1)
    cbar.set_label(cl[i], fontsize=20)
    ax1.set_title('$CO_{2}$ with DIC', fontsize=22)

    i = 1
    #'b_dicR',
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, 5e+23)
    tcmap = t_cmap[i]
    mesh = ax2.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax2)
    cbar.set_label(cl[i], fontsize=20)
    ax2.set_title('pH with DIC', fontsize=22)

    i = 2
    #'-w_dicR',
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, 6e+23)
    tcmap = t_cmap[i]
    mesh = ax3.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax3)
    cbar.set_label(cl[i], fontsize=20)
    ax3.set_title('$\Omega$ with DIC', fontsize=22)

    i = 3
    #'-g_alkR',
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, 5e+23)
    tcmap = t_cmap[i]
    mesh = ax4.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax4)
    cbar.set_label(cl[i], fontsize=20)
    ax4.set_title('$CO_{2}$ with TA', fontsize=22)

    i = 4
    #'-b_alkR',
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, 5e+23)
    tcmap = t_cmap[i]
    mesh = ax5.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax5)
    cbar.set_label(cl[i], fontsize=20)
    ax5.set_title('pH with TA', fontsize=22)

    i = 5
    #'w_alkR'
    tplt0 = surf_dat[i]
    tplt = np.ma.masked_values(tplt0, 2e+23)
    tcmap = t_cmap[i]
    mesh = ax6.pcolormesh(tplt, cmap=tcmap, vmin=vmins[i], vmax=vmaxs[i])
    cbar = fig.colorbar(mesh, ax=ax6)
    cbar.set_label(cl[i], fontsize=20)
    ax6.set_title('$\Omega$ with TA', fontsize=22)

    #tcmap.set_bad('white')
    st = 'Carbonate Chemistry Buffer Factors, ' + humandate
    plt.suptitle(st, fontsize=20)

    fname = rdir + f'{ddmmmyy}_buffmap_' + dss_sig + '.png'

    fig.savefig(fname)
    plt.close()
Ejemplo n.º 13
0
    def run_task(self):  # {{{
        """
        Plots time-series output of properties in an ocean region.
        """
        # Authors
        # -------
        # Xylar Asay-Davis

        self.logger.info("\nPlotting TS diagram for {}"
                         "...".format(self.regionName))

        register_custom_colormaps()

        config = self.config
        sectionName = self.sectionName

        startYear = self.mpasClimatologyTask.startYear
        endYear = self.mpasClimatologyTask.endYear

        regionMaskSuffix = config.getExpression(sectionName,
                                                'regionMaskSuffix')

        regionMaskFile = get_region_mask(config,
                                         '{}.geojson'.format(regionMaskSuffix))

        fcAll = read_feature_collection(regionMaskFile)

        fc = FeatureCollection()
        for feature in fcAll.features:
            if feature['properties']['name'] == self.regionName:
                fc.add_feature(feature)
                break

        self.logger.info('  Make plots...')

        groupLink = 'tsDiag' + self.regionGroup[0].lower() + \
            self.regionGroup[1:].replace(' ', '')

        nSubplots = 1 + len(self.obsDicts)
        if self.controlConfig is not None:
            nSubplots += 1

        if nSubplots == 4:
            nCols = 2
            nRows = 2
        else:
            nCols = min(nSubplots, 3)
            nRows = (nSubplots - 1) // 3 + 1

        axisIndices = numpy.reshape(numpy.arange(nRows * nCols),
                                    (nRows, nCols))[::-1, :].ravel()

        titleFontSize = config.get('plot', 'titleFontSize')
        axis_font = {'size': config.get('plot', 'axisFontSize')}
        title_font = {
            'size': titleFontSize,
            'color': config.get('plot', 'titleFontColor'),
            'weight': config.get('plot', 'titleFontWeight')
        }

        width = 3 + 4.5 * nCols
        height = 2 + 4 * nRows

        # noinspection PyTypeChecker
        fig, axarray = plt.subplots(nrows=nRows,
                                    ncols=nCols,
                                    sharey=True,
                                    figsize=(width, height))

        if nSubplots == 1:
            axarray = numpy.array(axarray)

        if nRows == 1:
            axarray = axarray.reshape((nRows, nCols))

        T, S, zMid, volume, zmin, zmax = self._get_mpas_t_s(self.config)
        mainRunName = config.get('runs', 'mainRunName')
        plotFields = [{
            'S': S,
            'T': T,
            'z': zMid,
            'vol': volume,
            'title': mainRunName
        }]

        if self.controlConfig is not None:
            T, S, zMid, volume, _, _ = self._get_mpas_t_s(self.controlConfig)
            controlRunName = self.controlConfig.get('runs', 'mainRunName')
            plotFields.append({
                'S': S,
                'T': T,
                'z': zMid,
                'vol': volume,
                'title': 'Control: {}'.format(controlRunName)
            })

        for obsName in self.obsDicts:
            obsT, obsS, obsZ, obsVol = self._get_obs_t_s(
                self.obsDicts[obsName])
            plotFields.append({
                'S': obsS,
                'T': obsT,
                'z': obsZ,
                'vol': obsVol,
                'title': obsName
            })

        Tbins = config.getExpression(sectionName, 'Tbins', usenumpyfunc=True)
        Sbins = config.getExpression(sectionName, 'Sbins', usenumpyfunc=True)

        normType = config.get(sectionName, 'normType')

        PT, SP = numpy.meshgrid(Tbins, Sbins)
        SA = gsw.SA_from_SP(SP, p=0., lon=0., lat=-75.)
        CT = gsw.CT_from_t(SA, PT, p=0.)

        neutralDensity = sigma0(SA, CT)
        rhoInterval = config.getfloat(sectionName, 'rhoInterval')
        contours = numpy.arange(24., 29. + rhoInterval, rhoInterval)

        diagramType = config.get(sectionName, 'diagramType')
        if diagramType not in ['volumetric', 'scatter']:
            raise ValueError('Unexpected diagramType {}'.format(diagramType))

        lastPanel = None
        volMinMpas = None
        volMaxMpas = None
        for index in range(len(axisIndices)):
            panelIndex = axisIndices[index]

            row = nRows - 1 - index // nCols
            col = numpy.mod(index, nCols)

            if panelIndex >= nSubplots:
                plt.delaxes(axarray[row, col])
                continue

            plt.sca(axarray[row, col])
            T = plotFields[index]['T']
            S = plotFields[index]['S']
            z = plotFields[index]['z']
            volume = plotFields[index]['vol']
            title = plotFields[index]['title']

            CS = plt.contour(SP,
                             PT,
                             neutralDensity,
                             contours,
                             linewidths=1.,
                             colors='k',
                             zorder=2)
            plt.clabel(CS, fontsize=12, inline=1, fmt='%4.2f')

            if diagramType == 'volumetric':
                lastPanel, volMin, volMax = \
                    self._plot_volumetric_panel(T, S, volume)

                if index == 0:
                    volMinMpas = volMin
                    volMaxMpas = volMax
                if normType == 'linear':
                    norm = colors.Normalize(vmin=0., vmax=volMaxMpas)
                elif normType == 'log':
                    if volMinMpas is None or volMaxMpas is None:
                        norm = None
                    else:
                        norm = colors.LogNorm(vmin=volMinMpas, vmax=volMaxMpas)
                else:
                    raise ValueError(
                        'Unsupported normType {}'.format(normType))
                if norm is not None:
                    lastPanel.set_norm(norm)
            else:
                lastPanel = self._plot_scatter_panel(T, S, z, zmin, zmax)

            CTFreezing = freezing.CT_freezing(Sbins, 0, 1)
            PTFreezing = gsw.t_from_CT(gsw.SA_from_SP(Sbins,
                                                      p=0.,
                                                      lon=0.,
                                                      lat=-75.),
                                       CTFreezing,
                                       p=0.)
            plt.plot(Sbins,
                     PTFreezing,
                     linestyle='--',
                     linewidth=1.,
                     color='k')

            plt.ylim([Tbins[0], Tbins[-1]])
            plt.xlim([Sbins[0], Sbins[-1]])

            plt.xlabel('Salinity (PSU)', **axis_font)
            if col == 0:
                plt.ylabel(r'Potential temperature ($^\circ$C)', **axis_font)
            plt.title(title)

        # do this before the inset because otherwise it moves the inset
        # and cartopy doesn't play too well with tight_layout anyway
        plt.tight_layout()

        fig.subplots_adjust(right=0.91)
        if nRows == 1:
            fig.subplots_adjust(top=0.85)
        else:
            fig.subplots_adjust(top=0.88)

        suptitle = 'T-S diagram for {} ({}, {:04d}-{:04d})\n' \
                   ' {} m < z < {} m'.format(self.regionName, self.season,
                                             startYear, endYear, zmin, zmax)
        fig.text(0.5,
                 0.9,
                 suptitle,
                 horizontalalignment='center',
                 **title_font)

        inset = add_inset(fig, fc, width=1.5, height=1.5)

        # move the color bar down a little ot avoid the inset
        pos0 = inset.get_position()
        pos1 = axarray[-1, -1].get_position()
        pad = 0.04
        top = pos0.y0 - pad
        height = top - pos1.y0
        cbar_ax = fig.add_axes([0.92, pos1.y0, 0.02, height])
        cbar = fig.colorbar(lastPanel, cax=cbar_ax)

        if diagramType == 'volumetric':
            cbar.ax.get_yaxis().labelpad = 15
            cbar.ax.set_ylabel(r'volume (m$^3$)', rotation=270)
        else:
            cbar.ax.set_ylabel('depth (m)', rotation=270)

        outFileName = '{}/TS_diagram_{}_{}.png'.format(self.plotsDirectory,
                                                       self.prefix,
                                                       self.season)
        savefig(outFileName, tight=False)

        caption = 'Regional mean of {}'.format(suptitle)
        write_image_xml(config=config,
                        filePrefix='TS_diagram_{}_{}'.format(
                            self.prefix, self.season),
                        componentName='Ocean',
                        componentSubdirectory='ocean',
                        galleryGroup='T-S Diagrams',
                        groupLink=groupLink,
                        gallery=self.regionGroup,
                        thumbnailDescription=self.regionName,
                        imageDescription=caption,
                        imageCaption=caption)
Ejemplo n.º 14
0
def profiles(carp, grid, stns):
             
    '''
    Take 2 daily datasets, carbon+ and grid, extract depth 
    profiles of sal,temp,DIC,TA,O2,pH,OmA and their standard deviations"
    '''
    w = carp
    wp = grid

    
    sal = wp.variables['vosaline'][0,:,:,:]
    temp = wp.variables['votemper'][0,:,:,:]
    DIC = w.variables['dissolved_inorganic_carbon'][0,:,:,:]
    TA = w.variables['total_alkalinity'][0,:,:,:]
    O2 = w.variables['dissolved_oxygen'][0,:,:,:]
    prof_depth = w.variables['deptht'][:]

    
    depth_broadcast = np.zeros([40,20,20])
    for i in range(0,40):
        depth_broadcast[i,:,:] = prof_depth[i]

    nos = len(stns)
    stn_list = []
    
    sal_prof = np.zeros([nos,40])
    temp_prof = np.zeros([nos,40])
    DIC_prof = np.zeros([nos,40])
    TA_prof = np.zeros([nos,40])
    pH_prof = np.zeros([nos,40])
    OmA_prof = np.zeros([nos,40])
    O2_prof = np.zeros([nos,40])

    sal_profSD = np.zeros([nos,40])
    temp_profSD = np.zeros([nos,40])
    DIC_profSD = np.zeros([nos,40])
    TA_profSD = np.zeros([nos,40])
    pH_profSD = np.zeros([nos,40])
    OmA_profSD = np.zeros([nos,40])
    O2_profSD = np.zeros([nos,40])
    
    b = 0
    for s in stns:
        stn_list.append(s)
        stn = stns[s]
        #print('Calculating profiles for ' + stns[s]['fullname'])
        ty = stns[s]['y']
        tx = stns[s]['x']

        ts = sal[:,ty:ty+20,tx:tx+20]
        tte = temp[:,ty:ty+20,tx:tx+20]
        td = DIC[:,ty:ty+20,tx:tx+20]
        tta = TA[:,ty:ty+20,tx:tx+20]
        to2 = O2[:,ty:ty+20,tx:tx+20]

        tsr =  ts.reshape(40,400)
        tter =  tte.reshape(40,400)
        tdr =  td.reshape(40,400)
        ttar =  tta.reshape(40,400)
        tdepth = depth_broadcast.reshape(40,400)
        to2r = to2.reshape(40,400)

        tsr[tsr == 0] = np.ma.masked
        tter[tter == 0] = np.ma.masked
        tdr[tdr == 0] = np.ma.masked
        ttar[ttar == 0] = np.ma.masked

        sal_prof[b,:] = np.ma.MaskedArray.nanmean(tsr, axis = 1)
        sal_profSD[b,:] = np.ma.MaskedArray.nanstd(tsr, axis = 1)
        
        temp_prof[b,:] = np.ma.MaskedArray.nanmean(tter, axis = 1)
        temp_profSD[b,:] = np.ma.MaskedArray.nanstd(tter, axis = 1)

        DIC_prof[b,:] = np.ma.MaskedArray.nanmean(tdr, axis = 1)
        DIC_profSD[b,:] = np.ma.MaskedArray.nanstd(tdr, axis = 1)

        TA_prof[b,:] = np.ma.MaskedArray.nanmean(ttar, axis = 1)
        TA_profSD[b,:] = np.ma.MaskedArray.nanstd(ttar, axis = 1)

        O2_prof[b,:] = np.ma.MaskedArray.nanmean(to2r, axis = 1)
        O2_profSD[b,:] = np.ma.MaskedArray.nanstd(to2r, axis = 1)

        tsra = np.ravel(ts)
        ttera = np.ravel(tte)
        tdra = np.ravel(td) * 1e-3
        ttara =  np.ravel(tta) * 1e-3
        tdepthra = np.ravel(tdepth)
        tpressure = tdepthra 
        tpressure[:] =1
        tzero = tdepthra * 0 
        
        tsra_psu = tsra*35/35.16504
        ttera_is = gsw.t_from_CT(tsra,ttera,tdepthra)

        response_tup = mocsy.mvars(temp=ttera_is, sal=tsra_psu, alk=ttara, dic=tdra, 
                           sil=tzero, phos=tzero, patm=tpressure, depth=tdepthra, lat=tzero, 
                            optcon='mol/m3', optt='Tinsitu', optp='m',
                            optb = 'l10', optk1k2='m10', optkf = 'dg', optgas = 'Pinsitu')
        pH,pco2,fco2,co2,hco3,co3,OmegaA,OmegaC,BetaD,DENis,p,Tis = response_tup

        pHra = pH.reshape(40,400)
        OmegaAra = OmegaA.reshape(40,400)

        pHra[pHra == 1.00000000e+20] = np.nan
        OmegaAra[OmegaAra == 1.00000000e+20] = np.nan
        pHra = np.ma.masked_invalid(pHra)
        OmegaAra = np.ma.masked_invalid(OmegaAra)

        pH_prof[b,:] = np.ma.MaskedArray.nanmean(pHra, axis = 1)
        pH_profSD[b,:] = np.ma.MaskedArray.nanstd(pHra, axis = 1)

        OmA_prof[b,:] = np.ma.MaskedArray.nanmean(OmegaAra, axis = 1)
        OmA_profSD[b,:] = np.ma.MaskedArray.nanstd(OmegaAra, axis = 1)
        
        #depth = w.variables['deptht'][:]
        sal_prof[sal_prof == 0 ] = np.nan
        temp_prof[temp_prof == 0 ] = np.nan
        DIC_prof[DIC_prof == 0 ] = np.nan
        TA_prof[TA_prof == 0 ] = np.nan
        pH_prof[pH_prof == 0 ] = np.nan
        OmA_prof[OmA_prof == 0 ] = np.nan
        
        b = b+1
        
    pars_profs = {'sal': sal_prof, 'sal_SD': sal_profSD,\
         'temp': temp_prof, 'temp_SD': temp_profSD,\
         'DIC': DIC_prof, 'DIC_SD' : DIC_profSD,\
         'TA': TA_prof, 'TA_SD' : TA_profSD,\
         'OmA': OmA_prof, 'OmA_SD': OmA_profSD,\
         'pH': pH_prof, 'pH_SD': pH_profSD,\
         'O2' : O2_prof, 'O2_SD': O2_profSD}
    return pars_profs, stn_list, prof_depth
Ejemplo n.º 15
0
def point_value(carp, grid, stns):
    '''
    
    '''   
    w = carp
    wp = grid
    
    sal = wp.variables['vosaline'][0,:,:,:]
    temp = wp.variables['votemper'][0,:,:,:]
    DIC = w.variables['dissolved_inorganic_carbon'][0,:,:,:]
    TA = w.variables['total_alkalinity'][0,:,:,:]
    O2 = w.variables['dissolved_oxygen'][0,:,:,:]
    depth = w.variables['deptht'][:]
    
    depth_broadcast = np.zeros([40,20,20])
    for i in range(0,40):
        depth_broadcast[i,:,:] = depth[i]
    
    depth_inds = [0,21,26]
    dum = [0.0,0.0,0.0]
    pt_depths = np.zeros_like(dum)
    
    for i in range(0,len(pt_depths)):
        di = depth_inds
        pt_depths[i] = depth[depth_inds[i]]
    
    nos = len(stns)
    stn_list = []

    sal_pt = np.zeros([nos,len(depth_inds)])
    temp_pt = np.zeros([nos,len(depth_inds)])
    DIC_pt = np.zeros([nos,len(depth_inds)])
    TA_pt = np.zeros([nos,len(depth_inds)])
    pH_pt = np.zeros([nos,len(depth_inds)])
    OmA_pt = np.zeros([nos,len(depth_inds)])
    O2_pt = np.zeros([nos,len(depth_inds)])

    sal_ptSD = np.zeros([nos,len(depth_inds)])
    temp_ptSD = np.zeros([nos,len(depth_inds)])
    DIC_ptSD = np.zeros([nos,len(depth_inds)])
    TA_ptSD = np.zeros([nos,len(depth_inds)])
    pH_ptSD = np.zeros([nos,len(depth_inds)])
    OmA_ptSD = np.zeros([nos,len(depth_inds)])
    O2_ptSD = np.zeros([nos,len(depth_inds)])
    
    b = 0
    for s in stns:
        stn_list.append(s)
        
        
        #print('Calculating point values for ' + stns[s]['fullname'])
        ty = stns[s]['y']
        tx = stns[s]['x']
        
        for d in range(0,len(depth_inds)):
            dp = depth[depth_inds[d]]
            ts = sal[d,ty:ty+20,tx:tx+20]
            tte = temp[d,ty:ty+20,tx:tx+20]
            td = DIC[d,ty:ty+20,tx:tx+20]
            tta = TA[d,ty:ty+20,tx:tx+20]
            to2 = O2[d,ty:ty+20,tx:tx+20]

            tsr =  ts.reshape(1,400)
            tter =  tte.reshape(1,400)
            tdr =  td.reshape(1,400)
            ttar =  tta.reshape(1,400)

            tdepth = np.zeros_like(ttar)
     

            tdepth[:] = dp
            to2r = to2.reshape(1,400)

            tsr[tsr == 0] = np.ma.masked
            tter[tter == 0] = np.ma.masked
            tdr[tdr == 0] = np.ma.masked
            ttar[ttar == 0] = np.ma.masked

            sal_pt[b,d] = np.ma.MaskedArray.nanmean(tsr, axis = 1)
            sal_ptSD[b,d] = np.ma.MaskedArray.nanstd(tsr, axis = 1)

            temp_pt[b,:] = np.ma.MaskedArray.nanmean(tter, axis = 1)
            temp_ptSD[b,d] = np.ma.MaskedArray.nanstd(tter, axis = 1)

            DIC_pt[b,d] = np.ma.MaskedArray.nanmean(tdr, axis = 1)
            DIC_ptSD[b,d] = np.ma.MaskedArray.nanstd(tdr, axis = 1)

            TA_pt[b,d] = np.ma.MaskedArray.nanmean(ttar, axis = 1)
            TA_ptSD[b,d] = np.ma.MaskedArray.nanstd(ttar, axis = 1)

            O2_pt[b,d] = np.ma.MaskedArray.nanmean(to2r, axis = 1)
            O2_ptSD[b,d] = np.ma.MaskedArray.nanstd(to2r, axis = 1)

            tsra = np.ravel(ts)
            ttera = np.ravel(tte)
            tdra = np.ravel(td) * 1e-3
            ttara =  np.ravel(tta) * 1e-3
            tdepthra = np.ravel(tdepth)
            tpressure = np.zeros_like(tdepthra)
            tpressure[:] =1
            tzero = tdepthra * 0 
            
            tsra_psu = tsra*35/35.16504
            ttera_is = gsw.t_from_CT(tsra,ttera,tdepthra)

            response_tup = mocsy.mvars(temp=ttera_is, sal=tsra_psu, alk=ttara, dic=tdra, 
                               sil=tzero, phos=tzero, patm=tpressure, depth=tdepthra, lat=tzero, 
                                optcon='mol/m3', optt='Tinsitu', optp='m',
                                optb = 'l10', optk1k2='m10', optkf = 'dg', optgas = 'Pinsitu')
            pH,pco2,fco2,co2,hco3,co3,OmegaA,OmegaC,BetaD,DENis,p,Tis = response_tup

            pHra = pH.reshape(1,400)
            OmegaAra = OmegaA.reshape(1,400)

            pHra[pHra == 1.00000000e+20] = np.nan
            OmegaAra[OmegaAra == 1.00000000e+20] = np.nan
            pHra = np.ma.masked_invalid(pHra)
            OmegaAra = np.ma.masked_invalid(OmegaAra)
        
            pH_pt[b,d] = np.ma.MaskedArray.nanmean(pHra, axis = 1)
            pH_pt[b,d] = np.ma.MaskedArray.nanstd(pHra, axis = 1)

            OmA_pt[b,d] = np.ma.MaskedArray.nanmean(OmegaAra, axis = 1)
            OmA_pt[b,d] = np.ma.MaskedArray.nanstd(OmegaAra, axis = 1)
            
            sal_pt[sal_pt == 0 ] = np.nan
            temp_pt[temp_pt == 0 ] = np.nan
            DIC_pt[DIC_pt == 0 ] = np.nan
            TA_pt[TA_pt == 0 ] = np.nan
            pH_pt[pH_pt == 0 ] = np.nan
            OmA_pt[OmA_pt == 0 ] = np.nan
            
        wb = b+1

    pars_pts = {'sal': sal_pt, 'sal_SD': sal_ptSD,\
     'temp': temp_pt, 'temp_SD': temp_ptSD,\
     'DIC': DIC_pt, 'DIC_SD' : DIC_ptSD,\
     'TA': TA_pt, 'TA_SD' : TA_ptSD,\
     'OmA': OmA_pt, 'OmA_SD': OmA_ptSD,\
     'pH': pH_pt, 'pH_SD': pH_ptSD,\
     'O2' : O2_pt, 'O2_SD': O2_ptSD}
    
    return pars_pts, pt_depths, stn_list