def main():
    plans, pidxs = load_plan()
    plan = plans[2]
    problem_env = make_environment(59)
    utils.set_body_transparency('top_wall_1', 0.5)
    #utils.set_robot_config(np.array([[ 3.6153236 ,  0.93829982,  5.63509206]]))
    utils.viewer()
    [utils.set_color(obj, [0.0, 0.0, 0.7]) for obj in problem_env.objects]
    utils.set_color('c_obst1', [1.0, 1.0, 0])
    viewer = problem_env.env.GetViewer()
    cam_transform = np.array(
        [[0.58774001, -0.61021391, 0.53122562, 0.93478185],
         [-0.80888257, -0.45655478, 0.37049525, -1.98781455],
         [0.01645225, -0.64745402, -0.76192691, 4.26729631], [0., 0., 0., 1.]])
    viewer.SetCamera(cam_transform)

    robot = problem_env.robot
    utils.open_gripper(robot)
    manip = robot.GetManipulator('rightarm_torso')
    robot.SetActiveDOFs(manip.GetArmIndices(),
                        DOFAffine.X | DOFAffine.Y | DOFAffine.RotationAxis,
                        [0, 0, 1])

    motion_plan_file = './test_scripts/jobtalk_figures/one_arm_domain_motion_plans_for_job_talk.pkl'
    mp_plans = get_motion_plans(plan, problem_env, motion_plan_file)

    import pdb
    pdb.set_trace()

    play_plan(plan, mp_plans, robot)
    import pdb
    pdb.set_trace()
    problem_env.init_saver.Restore()
def get_motion_plans(plan, problem_env, fname):
    if os.path.isfile(fname):
        mp_plans = pickle.load(open(fname, 'r'))
        return mp_plans

    robot = problem_env.robot
    utils.open_gripper(robot)
    manip = robot.GetManipulator('rightarm_torso')
    robot.SetActiveDOFs(manip.GetArmIndices(),
                        DOFAffine.X | DOFAffine.Y | DOFAffine.RotationAxis,
                        [0, 0, 1])
    mp = ArmBaseMotionPlanner(problem_env, 'rrt')
    mp_plans = []
    for action in plan:
        pick_goal = action.continuous_parameters['pick']['q_goal']
        mp_plan, status = mp.get_motion_plan(pick_goal,
                                             region_name='home_region')
        if status == 'HasSolution':
            mp_plans.append(mp_plan)
            action.execute_pick()
        else:
            import pdb
            pdb.set_trace()
        place_goal = action.continuous_parameters['place']['q_goal']
        mp_plan, status = mp.get_motion_plan(place_goal,
                                             region_name='home_region')
        if status == 'HasSolution':
            mp_plans.append(mp_plan)
            action.execute()
        else:
            import pdb
            pdb.set_trace()
    pickle.dump(mp_plans, open(fname, 'wb'))
    return mp_plans
Ejemplo n.º 3
0
    def compute_grasp_config(self,
                             obj,
                             pick_base_pose,
                             grasp_params,
                             from_place=False):
        set_robot_config(pick_base_pose, self.robot)

        if not from_place:
            # checks the base feasibility
            no_collision = not self.env.CheckCollision(self.robot)
            if not no_collision:
                return None
            # TODO: for some reason this is really slow, is it actually necessary?
            inside_region = self.problem_env.regions['home_region'].contains(self.robot.ComputeAABB()) or \
                            self.problem_env.regions['loading_region'].contains(self.robot.ComputeAABB())
            if not inside_region:
                return None

        #stime = time.time()
        open_gripper()
        grasps = compute_one_arm_grasp(depth_portion=grasp_params[2],
                                       height_portion=grasp_params[1],
                                       theta=grasp_params[0],
                                       obj=obj,
                                       robot=self.robot)
        #print 'grasp_computation', time.time()-stime
        grasp_config, grasp = solveIKs(self.env, self.robot, grasps)
        #print 'Succeed?', grasp_config is not None
        #print 'IK computation', time.time()-stime

        return grasp_config
    def compute_and_cache_ik_solutions(self, ikcachename):
        before = CustomStateSaver(self.problem_env.env)
        utils.open_gripper()

        # for o in self.problem_env.env.GetBodies()[2:]:
        #    o.Enable(False)
        self.problem_env.disable_objects()
        self.iksolutions = {}
        o = u'c_obst0'
        obj = self.problem_env.env.GetKinBody(o)
        if True:
            # for o, obj in self.objects.items():
            # print(o)
            self.iksolutions[o] = {r: [] for r in self.regions}
            pick_op = Operator(operator_type='one_arm_pick', discrete_parameters={'object': obj})
            pick_generator = UniformGenerator(pick_op, self.problem_env)
            pick_feasibility_checker = OneArmPickFeasibilityChecker(self.problem_env)
            for _ in range(10000):
                pick_params = pick_generator.sample_from_uniform()
                iks = []
                for r, region in self.regions.items():
                    place_op = Operator(operator_type='one_arm_place',
                                        discrete_parameters={
                                            'object': obj,
                                            'region': region})
                    place_generator = UniformGenerator(place_op, self.problem_env)

                    status = 'NoSolution'
                    for _ in range(10):
                        obj_pose = place_generator.sample_from_uniform()
                        set_obj_xytheta(obj_pose, obj)
                        set_point(obj, np.hstack([obj_pose[0:2], region.z + 0.001]))

                        params, status = pick_feasibility_checker.check_feasibility(pick_op, pick_params)

                        if status == 'HasSolution':
                            iks.append((obj.GetTransform(), params))
                            break

                    if status == 'NoSolution':
                        break

                if len(iks) == len(self.regions):
                    for r, ik in zip(self.regions, iks):
                        self.iksolutions[o][r].append(ik)

                if all(len(self.iksolutions[o][r]) >= 1000 for r in self.regions):
                    break

        # print([len(self.iksolutions[o][r]) for r in self.regions])
        self.iksolutions = self.iksolutions[o]

        # for o in self.problem_env.env.GetBodies()[2:]:
        #    o.Enable(True)
        self.problem_env.enable_objects()

        before.Restore()

        pickle.dump(self.iksolutions, open(ikcachename, 'w'))
Ejemplo n.º 5
0
    def sample_pick_cont_parameters(self):
        op_parameters = self.pick_generator.sample_from_uniform()
        grasp_params, pick_base_pose = get_pick_base_pose_and_grasp_from_pick_parameters(self.target_obj, op_parameters)
        if not self.is_base_feasible(pick_base_pose):
            return None, 'InfeasibleBase'

        utils.open_gripper()
        grasps = grasp_utils.compute_one_arm_grasp(depth_portion=grasp_params[2],
                                                   height_portion=grasp_params[1],
                                                   theta=grasp_params[0],
                                                   obj=self.target_obj,
                                                   robot=self.robot)
        grasp_config, grasp = grasp_utils.solveIKs(self.problem_env.env, self.robot, grasps)

        param = {'q_goal': np.hstack([grasp_config, pick_base_pose]),
                 'grasp_params': grasp_params,
                 'g_config': grasp_config,
                 'action_parameters': op_parameters}

        if grasp_config is None:
            return None, 'InfeasibleIK'
        else:
            return param, 'HasSolution'