Ejemplo n.º 1
0
    def test_batch_mean(self):
        correct = np.array([-2. / 3, 1., 21. / 4])

        with clean_session():
            array = tf.constant([
                [1, -8, 5, 4, 9],
                [0, 2, 7, 8, 1],
                [2, -8, 6, 4, 9],
            ], dtype=tf.float32)

            mask = tf.constant([
                [1, 1, 1, 0, 0],
                [1, 1, 0, 0, 0],
                [1, 0, 1, 1, 1],
            ], dtype=tf.float32)

            bad_mask = tf.constant([
                [1, 1, 1, 0, 0],
                [0, 0, 0, 0, 0],
                [1, 0, 1, 1, 1],
            ], dtype=tf.float32)

            bm = reduce_mean(SequenceBatch(array, mask))
            assert_almost_equal(bm.eval(), correct, decimal=5)

            bm2 = reduce_mean(SequenceBatch(array, bad_mask))

            with pytest.raises(InvalidArgumentError):
                bm2.eval()

            # try allow_empty option
            bm3 = reduce_mean(SequenceBatch(array, bad_mask), allow_empty=True)
            assert_almost_equal(bm3.eval(), np.array([-2. / 3, 0., 21. / 4]))
Ejemplo n.º 2
0
    def test_multidim(self):
        npa = lambda arr: np.array(arr, dtype=np.float32)
        correct = npa([
            npa([4, 7, 10]) / 2,
            npa([8, 14, 20]) / 3,
            npa([13, 16, 19]) / 3,
        ])

        with clean_session():
            array = tf.constant([[[1., 2., 3.],
                                  [3., 5., 7.],
                                  [0., 0., 0.]],
                                 [[2., 4., 6.],
                                  [3., 5., 7.],
                                  [3., 5., 7.]],
                                 [[9., 9., 9.],
                                  [3., 5., 7.],
                                  [1., 2., 3.]]], dtype=tf.float32)
            mask = tf.constant([
                [1, 1, 0],
                [1, 1, 1],
                [1, 1, 1],
            ], dtype=tf.float32)

            bm = reduce_mean(SequenceBatch(array, mask))
            assert_almost_equal(bm.eval(), correct, decimal=5)
Ejemplo n.º 3
0
    def test(self):
        npa = lambda arr: np.array(arr, dtype=np.float32)
        correct = npa([
            npa([3, 5, 7]),
            npa([3, 5, 7]),
            npa([9, 9, 9]),
        ])

        with clean_session():
            array = tf.constant(
                [[[1., 2., 3.], [3., 5., 7.], [100., 200., 2000.]],
                 [[2., 4., 6.], [3., 5., 7.], [3., 5., 7.]],
                 [[9., 9., 9.], [3., 5., 7.], [1., 2., 3.]]],
                dtype=tf.float32)
            mask = tf.constant([
                [1, 1, 0],
                [1, 1, 1],
                [1, 1, 1],
            ],
                               dtype=tf.float32)

            bm = reduce_max(SequenceBatch(array, mask))
            assert_almost_equal(bm.eval(), correct, decimal=5)

            bad_mask = tf.constant([
                [0, 0, 0],
                [1, 1, 1],
                [1, 1, 1],
            ],
                                   dtype=tf.float32)

            bm2 = reduce_mean(SequenceBatch(array, bad_mask))

            with pytest.raises(InvalidArgumentError):
                bm2.eval()
Ejemplo n.º 4
0
 def embed_sequences(self, embedded_sequence_batch):
     return reduce_mean(embedded_sequence_batch, allow_empty=self._allow_empty)
Ejemplo n.º 5
0
 def test_empty(self):
     with clean_session():
         array = tf.constant(np.empty((0, 10, 20)))
         mask = tf.constant(np.empty((0, 10)))
         bm = reduce_mean(SequenceBatch(array, mask))
         assert bm.eval().shape == (0, 20)