Ejemplo n.º 1
0
 def test_pareto_optimality2(self):
     node_profile = NodeProfileSimple()
     pt2 = LabelTimeSimple(departure_time=10, arrival_time_target=35)
     self.assertTrue(node_profile.update_pareto_optimal_tuples(pt2))
     pt1 = LabelTimeSimple(departure_time=5, arrival_time_target=35)
     self.assertFalse(node_profile.update_pareto_optimal_tuples(pt1))
     self.assertEquals(len(node_profile.get_final_optimal_labels()), 1)
Ejemplo n.º 2
0
 def test_walk_duration(self):
     node_profile = NodeProfileSimple(walk_to_target_duration=27)
     self.assertEqual(27, node_profile.get_walk_to_target_duration())
     pt1 = LabelTimeSimple(departure_time=5, arrival_time_target=35)
     self.assertFalse(node_profile.update_pareto_optimal_tuples(pt1))
     pt2 = LabelTimeSimple(departure_time=10, arrival_time_target=35)
     self.assertTrue(node_profile.update_pareto_optimal_tuples(pt2))
Ejemplo n.º 3
0
    def get_time_profile_analyzer(self, max_n_boardings=None):
        """
        Parameters
        ----------
        max_n_boardings: int
            The maximum number of boardings allowed for the labels used to construct the "temporal distance profile"

        Returns
        -------
        analyzer: NodeProfileAnalyzerTime
        """
        if max_n_boardings is None:
            max_n_boardings = self.max_trip_n_boardings()
        # compute only if not yet computed
        if not max_n_boardings in self._n_boardings_to_simple_time_analyzers:
            if max_n_boardings == 0:
                valids = []
            else:
                candidate_labels = [
                    LabelTimeSimple(label.departure_time,
                                    label.arrival_time_target)
                    for label in self._node_profile_final_labels
                    if ((self.start_time_dep <= label.departure_time)
                        and label.n_boardings <= max_n_boardings)
                ]
                valids = compute_pareto_front(candidate_labels)
            valids.sort(key=lambda label: -label.departure_time)
            profile = NodeProfileSimple(self._walk_to_target_duration)
            for valid in valids:
                profile.update_pareto_optimal_tuples(valid)
            npat = NodeProfileAnalyzerTime.from_profile(
                profile, self.start_time_dep, self.end_time_dep)
            self._n_boardings_to_simple_time_analyzers[max_n_boardings] = npat
        return self._n_boardings_to_simple_time_analyzers[max_n_boardings]
Ejemplo n.º 4
0
 def test_identity_profile(self):
     identity_profile = NodeProfileSimple(0)
     self.assertFalse(
         identity_profile.update_pareto_optimal_tuples(
             LabelTimeSimple(10, 10)))
     self.assertEqual(
         10,
         identity_profile.evaluate_earliest_arrival_time_at_target(10, 0))
def plot_plain_profile():
    profile = NodeProfileSimple(walk_to_target_duration=10 * 60)
    for label in labels_t_dep_dur_b:
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=label[0] * 60,
                            arrival_time_target=(label[0] + label[1]) * 60))

    analyzer = NodeProfileAnalyzerTime(profile, 0 * 60, 20 * 60)
    fig = plt.figure(figsize=(5.5, 3.5))

    ax1 = plt.subplot(gs[:, :4])
    analyzer.plot_temporal_distance_profile(format_string="%M",
                                            plot_journeys=True,
                                            lw=3,
                                            ax=ax1,
                                            plot_tdist_stats=True,
                                            alpha=0.15,
                                            plot_trip_stats=False,
                                            duration_divider=60.0)

    ax2 = plt.subplot(gs[:, 4:])
    # ax2 = plt.subplot2grid(subplot_grid, (0, 4), colspan=2, rowspan=1)
    fig = analyzer.plot_temporal_distance_pdf_horizontal(use_minutes=True,
                                                         ax=ax2,
                                                         legend_font_size=9)

    ax2.set_ylabel("")
    ax2.set_yticks([])

    ax1.set_ylim(0, 11.5)
    ax2.set_ylim(0, 11.5)
    ax2.set_xlim(0, 0.3)
    ax2.set_yticklabels(["" for _ in ax2.get_yticks()])
    ax2.set_xticks([0.1, 0.2, 0.3])

    ax1.set_xlabel("Departure time $t_{\\text{dep}}$ (min)")
    ax1.set_ylabel("Temporal distance $\\tau$ (min)")

    handles, labels = ax1.get_legend_handles_labels()

    ax1.legend(handles,
               labels,
               loc="best",
               fancybox=True,
               ncol=2,
               shadow=False,
               prop={'size': 9})
    for _ax, letter in zip([ax1, ax2], "AB"):
        _ax.text(0.04,
                 0.98,
                 "\\textbf{" + letter + "}",
                 horizontalalignment="left",
                 verticalalignment="top",
                 transform=_ax.transAxes,
                 fontsize=15,
                 color="black")
    fig.savefig(settings.FIGS_DIRECTORY + "schematic_temporal_distance.pdf")
Ejemplo n.º 6
0
 def test_temporal_distances_no_transit_trips_within_range(self):
     pairs = [
         LabelTimeSimple(departure_time=11, arrival_time_target=12),
     ]
     profile = NodeProfileSimple(walk_to_target_duration=5)
     for pair in pairs:
         profile.update_pareto_optimal_tuples(pair)
     analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 10)
     self.assertAlmostEqual(5, analyzer.max_temporal_distance())
     self.assertAlmostEqual(2, analyzer.min_temporal_distance())
     self.assertAlmostEqual((7 * 5 + 3 * (5 + 2) / 2.) / 10.0,
                            analyzer.mean_temporal_distance())
     self.assertAlmostEqual(5, analyzer.median_temporal_distance())
Ejemplo n.º 7
0
    def test_temporal_distance_statistics_with_walk2(self):
        pt1 = LabelTimeSimple(departure_time=10, arrival_time_target=30)
        profile = NodeProfileSimple(25)
        profile.update_pareto_optimal_tuples(pt1)
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 10)
        # analyzer.plot_temporal_distance_profile()
        # plt.show()

        self.assertAlmostEqual(
            25, analyzer.max_temporal_distance())  # 1 -wait-> 2 -travel->4
        self.assertAlmostEqual(20, analyzer.min_temporal_distance())
        self.assertAlmostEqual((7.5 * 25 + 2.5 * 20) / 10.0,
                               analyzer.mean_temporal_distance())
        self.assertAlmostEqual(25, analyzer.median_temporal_distance())
Ejemplo n.º 8
0
 def test_trip_duration_statistics_simple(self):
     pairs = [
         LabelTimeSimple(1.0, 2.0),
         LabelTimeSimple(2.0, 4.0),
         LabelTimeSimple(4.0, 5.0)
     ]
     profile = NodeProfileSimple()
     for pair in pairs:
         profile.update_pareto_optimal_tuples(pair)
     analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 100)
     self.assertAlmostEqual(2, analyzer.max_trip_duration())
     self.assertAlmostEqual(1, analyzer.min_trip_duration())
     self.assertAlmostEqual(4 / 3.0, analyzer.mean_trip_duration())
     self.assertAlmostEqual(1, analyzer.median_trip_duration())
Ejemplo n.º 9
0
 def test_time_offset(self):
     max_distances = []
     for offset in [0, 10, 100, 1000]:
         labels = [
             LabelTimeSimple(departure_time=7248 + offset,
                             arrival_time_target=14160 + offset),
         ]
         profile = NodeProfileSimple(walk_to_target_duration=float('inf'))
         for label in labels:
             profile.update_pareto_optimal_tuples(label)
         analyzer = NodeProfileAnalyzerTime.from_profile(
             profile, 0 + offset, 7200 + offset)
         max_distances.append(analyzer.max_temporal_distance())
     max_distances = numpy.array(max_distances)
     assert ((max_distances == max_distances[0]).all())
Ejemplo n.º 10
0
 def test_temporal_distance_statistics_with_walk(self):
     pt1 = LabelTimeSimple(departure_time=1, arrival_time_target=2)
     pt2 = LabelTimeSimple(
         departure_time=4,
         arrival_time_target=5)  # not taken into account by the analyzer
     profile = NodeProfileSimple(1.5)
     assert isinstance(pt1, LabelTimeSimple), type(pt1)
     profile.update_pareto_optimal_tuples(pt1)
     profile.update_pareto_optimal_tuples(pt2)
     analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 3)
     self.assertAlmostEqual(
         1.5, analyzer.max_temporal_distance())  # 1 -wait-> 2 -travel->4
     self.assertAlmostEqual(1, analyzer.min_temporal_distance())
     self.assertAlmostEqual((2.5 * 1.5 + 0.5 * 1.25) / 3.,
                            analyzer.mean_temporal_distance())
     self.assertAlmostEqual(1.5, analyzer.median_temporal_distance())
Ejemplo n.º 11
0
    def test_temporal_distance_statistics(self):
        pairs = [
            LabelTimeSimple(1, 2),
            LabelTimeSimple(2, 4),
            LabelTimeSimple(4, 5)
        ]
        profile = NodeProfileSimple()
        for pair in pairs:
            profile.update_pareto_optimal_tuples(pair)

        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 3)
        self.assertAlmostEqual(
            4 - 1, analyzer.max_temporal_distance())  # 1 -wait-> 2 -travel->4
        self.assertAlmostEqual(1, analyzer.min_temporal_distance())
        self.assertAlmostEqual((1.5 * 1 + 2.5 * 1 + 2.5 * 1) / 3.,
                               analyzer.mean_temporal_distance())
        self.assertAlmostEqual(2.25, analyzer.median_temporal_distance())
Ejemplo n.º 12
0
    def test_earliest_arrival_time(self):
        node_profile = NodeProfileSimple()
        self.assertEquals(
            float("inf"),
            node_profile.evaluate_earliest_arrival_time_at_target(0, 0))

        node_profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=1, arrival_time_target=1))
        self.assertEquals(
            1, node_profile.evaluate_earliest_arrival_time_at_target(0, 0))

        node_profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=3, arrival_time_target=4))
        self.assertEquals(
            4, node_profile.evaluate_earliest_arrival_time_at_target(2, 0))
Ejemplo n.º 13
0
 def test_pareto_optimality_with_transfers(self):
     node_profile = NodeProfileSimple(
         label_class=LabelTimeWithBoardingsCount)
     pt3 = LabelTimeWithBoardingsCount(departure_time=5,
                                       arrival_time_target=35,
                                       n_boardings=0,
                                       first_leg_is_walk=True)
     pt2 = LabelTimeWithBoardingsCount(departure_time=5,
                                       arrival_time_target=35,
                                       n_boardings=1,
                                       first_leg_is_walk=True)
     pt1 = LabelTimeWithBoardingsCount(departure_time=5,
                                       arrival_time_target=35,
                                       n_boardings=2,
                                       first_leg_is_walk=True)
     self.assertTrue(node_profile.update_pareto_optimal_tuples(pt1))
     self.assertTrue(node_profile.update_pareto_optimal_tuples(pt2))
     self.assertTrue(node_profile.update_pareto_optimal_tuples(pt3))
     self.assertEqual(1, len(node_profile.get_final_optimal_labels()))
Ejemplo n.º 14
0
    def test_temporal_distance_pdf_with_walk(self):
        profile = NodeProfileSimple(25)
        pt1 = LabelTimeSimple(10, 30)
        profile.update_pareto_optimal_tuples(pt1)
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 10)

        self.assertEqual(
            len(analyzer.profile_block_analyzer._temporal_distance_pdf()), 3)

        split_points, densities, delta_peaks = analyzer.profile_block_analyzer._temporal_distance_pdf(
        )
        self.assertEqual(len(split_points), 2)
        self.assertEqual(split_points[0], 20)
        self.assertEqual(split_points[1], 25)

        self.assertEqual(len(densities), 1)
        self.assertEqual(densities[0], 0.1)

        self.assertIn(25, delta_peaks)
        self.assertEqual(delta_peaks[25], 0.5)
Ejemplo n.º 15
0
    def test_trip_duration_statistics_empty_profile(self):
        profile = NodeProfileSimple()
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 10)
        self.assertEqual(float('inf'), analyzer.max_trip_duration())
        self.assertEqual(float('inf'), analyzer.min_trip_duration())
        self.assertEqual(float('inf'), analyzer.mean_trip_duration())
        self.assertEqual(float('inf'), analyzer.median_trip_duration())

        self.assertEqual(float('inf'), analyzer.max_temporal_distance())
        self.assertEqual(float('inf'), analyzer.min_temporal_distance())
        self.assertEqual(float('inf'), analyzer.mean_temporal_distance())
        self.assertEqual(float('inf'), analyzer.median_temporal_distance())
Ejemplo n.º 16
0
    def test_pareto_optimality(self):
        node_profile = NodeProfileSimple()

        pair1 = LabelTimeSimple(departure_time=1, arrival_time_target=2)
        self.assertTrue(node_profile.update_pareto_optimal_tuples(pair1))

        pair2 = LabelTimeSimple(departure_time=2, arrival_time_target=3)
        self.assertTrue(node_profile.update_pareto_optimal_tuples(pair2))

        self.assertEquals(2, len(node_profile._labels))

        pair3 = LabelTimeSimple(departure_time=1, arrival_time_target=1)
        self.assertTrue(node_profile.update_pareto_optimal_tuples(pair3))
        self.assertEquals(2,
                          len(node_profile._labels),
                          msg=str(node_profile.get_final_optimal_labels()))

        pair4 = LabelTimeSimple(departure_time=1, arrival_time_target=2)
        self.assertFalse(node_profile.update_pareto_optimal_tuples(pair4))
Ejemplo n.º 17
0
    def test_all_plots(self):
        profile = NodeProfileSimple(25)
        pt1 = LabelTimeSimple(departure_time=10, arrival_time_target=30)
        profile.update_pareto_optimal_tuples(pt1)
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 10)
        analyzer.plot_temporal_distance_profile(plot_tdist_stats=True)
        analyzer.plot_temporal_distance_cdf()
        analyzer.plot_temporal_distance_pdf()
        plt.show()

        profile = NodeProfileSimple()
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=2 * 60,
                            arrival_time_target=11 * 60))
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=20 * 60,
                            arrival_time_target=25 * 60))
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=40 * 60,
                            arrival_time_target=45 * 60))
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 60 * 60)
        analyzer.plot_temporal_distance_profile()
        analyzer.plot_temporal_distance_cdf()
        analyzer.plot_temporal_distance_pdf()

        profile = NodeProfileSimple()
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=2 * 60, arrival_time_target=3 * 60))
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=4 * 60,
                            arrival_time_target=25 * 60))
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 5 * 60)
        analyzer.plot_temporal_distance_profile()
        analyzer.plot_temporal_distance_cdf()
        analyzer.plot_temporal_distance_pdf()

        pt1 = LabelTimeSimple(departure_time=1, arrival_time_target=2)
        pt2 = LabelTimeSimple(
            departure_time=4,
            arrival_time_target=5)  # not taken into account by the analyzer
        profile = NodeProfileSimple(1.5)
        profile.update_pareto_optimal_tuples(pt1)
        profile.update_pareto_optimal_tuples(pt2)
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 3)
        analyzer.plot_temporal_distance_profile()
        analyzer.plot_temporal_distance_cdf()

        plt.show()
Ejemplo n.º 18
0
    def __init__(self,
                 transit_events,
                 target_stop,
                 start_time=None,
                 end_time=None,
                 transfer_margin=0,
                 walk_network=None,
                 walk_speed=1.5,
                 verbose=False):
        """
        Parameters
        ----------
        transit_events: list[Connection]
            events are assumed to be ordered in DECREASING departure_time (!)
        target_stop: int
            index of the target stop
        start_time : int, optional
            start time in unixtime seconds
        end_time: int, optional
            end time in unixtime seconds (no connections will be scanned after this time)
        transfer_margin: int, optional
            required extra margin required for transfers in seconds
        walk_speed: float, optional
            walking speed between stops in meters / second.
        walk_network: networkx.Graph, optional
            each edge should have the walking distance as a data attribute ("distance_shape") expressed in meters
        verbose: boolean, optional
            whether to print out progress
        """
        AbstractRoutingAlgorithm.__init__(self)

        self._target = target_stop
        self._connections = transit_events
        if start_time is None:
            start_time = transit_events[-1].departure_time
        if end_time is None:
            end_time = transit_events[0].departure_time
        self._start_time = start_time
        self._end_time = end_time
        self._transfer_margin = transfer_margin
        if walk_network is None:
            walk_network = networkx.Graph()
        self._walk_network = walk_network
        self._walk_speed = float(walk_speed)
        self._verbose = verbose

        # algorithm internals

        # trip flags:
        self.__trip_min_arrival_time = defaultdict(lambda: float("inf"))

        # initialize stop_profiles
        self._stop_profiles = defaultdict(lambda: NodeProfileSimple())
        # initialize stop_profiles for target stop, and its neighbors
        self._stop_profiles[self._target] = NodeProfileSimple(0)
        if target_stop in walk_network.nodes():
            for target_neighbor in walk_network.neighbors(target_stop):
                edge_data = walk_network.get_edge_data(target_neighbor,
                                                       target_stop)
                walk_duration = edge_data["d_walk"] / self._walk_speed
                self._stop_profiles[target_neighbor] = NodeProfileSimple(
                    walk_duration)