Ejemplo n.º 1
0
    def test_bundle_adjustment(self):
        """Test Structure from Motion bundle adjustment solution with accurate prior value."""

        # Create the set of ground-truth landmarks
        expected_points = sfm_data.create_points()

        # Create the set of ground-truth poses
        expected_poses = sfm_data.create_poses()

        # Create the nrCameras*nrPoints feature data input for  atrium_sfm()
        feature_data = sfm_data.Data(self.nrCameras, self.nrPoints)

        # Project points back to the camera to generate synthetic key points
        for i, pose in enumerate(expected_poses):
            for j, point in enumerate(expected_points):
                feature_data.J[i][j] = j
                camera = gtsam.PinholeCameraCal3_S2(pose, self.calibration)
                feature_data.Z[i][j] = camera.project(point)

        result = self.sfm.bundle_adjustment(feature_data,2.5, 0, 0)

        # Compare output poses with ground truth poses
        for i in range(len(expected_poses)):
            pose_i = result.atPose3(symbol(ord('x'), i))
            self.assert_gtsam_equals(pose_i, expected_poses[i])

        # Compare output points with ground truth points
        for j in range(len(expected_points)):
            point_j = result.atPoint3(symbol(ord('p'), j))
            self.assert_gtsam_equals(point_j, expected_points[j])
Ejemplo n.º 2
0
    def landmark_projection(self, pose):
        """ Project landmark points in the map to the given camera pose. 
            And filter landmark points outside the view of the current camera pose.
        Parameters:
            pose - gtsam.Point3, the pose of a camera
            self.map - A Landmarks Object
        Returns:
            observed_landmarks - A Landmarks Object
        """
        # Check if the atrium map is empty
        assert self.map.get_length(), "the map is empty"

        observed_landmarks = Landmarks([], [])
        for i, landmark_point in enumerate(self.map.landmarks):
            camera = gtsam.PinholeCameraCal3_S2(pose, self.calibration)
            # feature is gtsam.Point2 object
            landmark_point = Point3(landmark_point[0], landmark_point[1],
                                    landmark_point[2])
            feature_point = camera.project(landmark_point)
            # Check if the projected feature is within the field of view.
            if (feature_point.x() >= 0 and feature_point.x() < self.width
                    and feature_point.y() >= 0
                    and feature_point.y() < self.height):
                observed_landmarks.append(
                    self.map.landmarks[i], self.map.descriptors[i],
                    [feature_point.x(), feature_point.y()])
        return observed_landmarks
Ejemplo n.º 3
0
    def landmarks_projection(self, pose):
        """ Project landmark points in the map to the given camera pose. 
            And filter landmark points outside the view of the current camera pose.
        Parameters:
            pose: gtsam.Point3, the pose of a camera
        Returns:
            Features: A Feature object. Contains all the projected features that can be viewed at the current camera pose.  
            map_indices: A list of indices. Records the corresponding indices in the map of projected feature. 
                        The length is the number of feature points in Features.
        """
        # Check if the atrium map is empty
        assert self.atrium_map.get_length(), "the atrium map is empty"

        points = []
        descriptors = []
        map_indices = []
        for i, landmark_point in enumerate(self.atrium_map.landmark_list):
            camera = gtsam.PinholeCameraCal3_S2(pose, self.calibration)
            # feature is gtsam.Point2 object
            feature_point = camera.project(landmark_point)

            # Check if the projected feature is within the field of view.
            if (feature_point.x() > 0 and feature_point.x() < self.image_width
                    and feature_point.y() > 0 and feature_point.y() < self.image_height):
                points.append(feature_point)
                descriptors.append(self.atrium_map.get_descriptor_from_list(i))
                map_indices.append(i)
        return Features(np.array(points), np.array(descriptors)), map_indices
Ejemplo n.º 4
0
 def test_insertBackprojections(self):
     """Test insertBackprojections."""
     values = gtsam.Values()
     cam = gtsam.PinholeCameraCal3_S2()
     gtsam.utilities.insertBackprojections(
         values, cam, [0, 1, 2], np.asarray([[20, 30, 40], [20, 30, 40]]),
         10)
     np.testing.assert_allclose(values.atPoint3(0),
                                gtsam.Point3(200, 200, 10))
Ejemplo n.º 5
0
    def test_bundle_adjustment_with_error(self):
        """Test Structure from Motion solution with ill estimated prior value."""

        # Create the set of actual points and poses
        actual_points = []
        actual_poses = []

        # Create the set of ground-truth landmarks
        points = sfm_data.create_points()

        # Create the set of ground-truth poses
        poses = sfm_data.create_poses()

        # Create the nrCameras*nrPoints feature point data input for  atrium_sfm()
        feature_data = sfm_data.Data(self.nrCameras, self.nrPoints)

        # Project points back to the camera to generate feature points
        for i, pose in enumerate(poses):
            for j, point in enumerate(points):
                feature_data.J[i][j] = j
                camera = gtsam.PinholeCameraCal3_S2(pose, self.calibration)
                feature_data.Z[i][j] = camera.project(point)

        result = self.sfm.bundle_adjustment(
            feature_data, 2.5, self.rotation_error, self.translation_error)

        # Similarity transform
        s_poses = []
        s_points = []
        _sim3 = sim3.Similarity3()

        for i in range(len(poses)):
            pose_i = result.atPose3(symbol(ord('x'), i))
            s_poses.append(pose_i)

        for j in range(len(points)):
            point_j = result.atPoint3(symbol(ord('p'), j))
            s_points.append(point_j)

        pose_pairs = [[s_poses[2], poses[2]], [s_poses[1], poses[1]], [s_poses[0], poses[0]]]

        _sim3.sim3_pose(pose_pairs)

        s_map = (s_poses, s_points)
        actual_poses, actual_points = _sim3.map_transform(s_map)

        # Compare output poses with ground truth poses
        for i, pose in enumerate(actual_poses):
            self.assert_gtsam_equals(pose, poses[i],1e-2)

        # Compare output points with ground truth points
        for i, point in enumerate(actual_points):
            self.assert_gtsam_equals(point, points[i], 1e-2)
Ejemplo n.º 6
0
 def test_reprojectionErrors(self):
     """Test reprojectionErrors."""
     pixels = np.asarray([[20, 30], [20, 30]])
     I = [1, 2]
     K = gtsam.Cal3_S2()
     graph = gtsam.NonlinearFactorGraph()
     gtsam.utilities.insertProjectionFactors(
         graph, 0, I, pixels, gtsam.noiseModel.Isotropic.Sigma(2, 0.1), K)
     values = gtsam.Values()
     values.insert(0, gtsam.Pose3())
     cam = gtsam.PinholeCameraCal3_S2(gtsam.Pose3(), K)
     gtsam.utilities.insertBackprojections(values, cam, I, pixels, 10)
     errors = gtsam.utilities.reprojectionErrors(graph, values)
     np.testing.assert_allclose(errors, np.zeros((2, 2)))
Ejemplo n.º 7
0
def visual_ISAM2_example():
    plt.ion()

    # Define the camera calibration parameters
    K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)

    # Define the camera observation noise model
    measurement_noise = gtsam.noiseModel_Isotropic.Sigma(
        2, 1.0)  # one pixel in u and v

    # Create the set of ground-truth landmarks
    points = SFMdata.createPoints()

    # Create the set of ground-truth poses
    poses = SFMdata.createPoses(K)

    # Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
    # to maintain proper linearization and efficient variable ordering, iSAM2
    # performs partial relinearization/reordering at each step. A parameter
    # structure is available that allows the user to set various properties, such
    # as the relinearization threshold and type of linear solver. For this
    # example, we we set the relinearization threshold small so the iSAM2 result
    # will approach the batch result.
    parameters = gtsam.ISAM2Params()
    parameters.setRelinearizeThreshold(0.01)
    parameters.setRelinearizeSkip(1)
    isam = gtsam.ISAM2(parameters)

    # Create a Factor Graph and Values to hold the new data
    graph = gtsam.NonlinearFactorGraph()
    initial_estimate = gtsam.Values()

    #  Loop over the different poses, adding the observations to iSAM incrementally
    for i, pose in enumerate(poses):

        # Add factors for each landmark observation
        for j, point in enumerate(points):
            camera = gtsam.PinholeCameraCal3_S2(pose, K)
            measurement = camera.project(point)
            graph.push_back(
                gtsam.GenericProjectionFactorCal3_S2(measurement,
                                                     measurement_noise, X(i),
                                                     L(j), K))

        # Add an initial guess for the current pose
        # Intentionally initialize the variables off from the ground truth
        initial_estimate.insert(
            X(i),
            pose.compose(
                gtsam.Pose3(gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25),
                            gtsam.Point3(0.05, -0.10, 0.20))))

        # If this is the first iteration, add a prior on the first pose to set the
        # coordinate frame and a prior on the first landmark to set the scale.
        # Also, as iSAM solves incrementally, we must wait until each is observed
        # at least twice before adding it to iSAM.
        if i == 0:
            # Add a prior on pose x0
            pose_noise = gtsam.noiseModel_Diagonal.Sigmas(
                np.array([0.3, 0.3, 0.3, 0.1, 0.1,
                          0.1]))  # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
            graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], pose_noise))

            # Add a prior on landmark l0
            point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
            graph.push_back(
                gtsam.PriorFactorPoint3(L(0), points[0],
                                        point_noise))  # add directly to graph

            # Add initial guesses to all observed landmarks
            # Intentionally initialize the variables off from the ground truth
            for j, point in enumerate(points):
                initial_estimate.insert(
                    L(j),
                    gtsam.Point3(point.x() - 0.25,
                                 point.y() + 0.20,
                                 point.z() + 0.15))
        else:
            # Update iSAM with the new factors
            isam.update(graph, initial_estimate)
            # Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
            # If accuracy is desired at the expense of time, update(*) can be called additional
            # times to perform multiple optimizer iterations every step.
            isam.update()
            current_estimate = isam.calculateEstimate()
            print("****************************************************")
            print("Frame", i, ":")
            for j in range(i + 1):
                print(X(j), ":", current_estimate.atPose3(X(j)))

            for j in range(len(points)):
                print(L(j), ":", current_estimate.atPoint3(L(j)))

            visual_ISAM2_plot(current_estimate)

            # Clear the factor graph and values for the next iteration
            graph.resize(0)
            initial_estimate.clear()

    plt.ioff()
    plt.show()
    K = np.array([[50.0, 0, 50.0], [0.0, 50.0, 50.0], [0.0, 0.0, 1.0]])
    D = np.array([0.0, 0.0, 0.0, 0.0, 0.0])

    Ksim = gtsam.Cal3_S2(iSAM2Wrapper.CameraMatrix_to_Cal3_S2(K))

    # Create a sample world point, this case it is 10,10,10
    points = SFMdata.createPoints()
    point_3d = points[0]

    # Create 2 camera poses to measure the 3d point from
    poses = SFMdata.createPoses(Ksim)
    pose1 = poses[0]
    pose2 = poses[1]

    # Create GTSAM camera objects with poses
    camera1 = gtsam.PinholeCameraCal3_S2(pose1, Ksim)
    camera2 = gtsam.PinholeCameraCal3_S2(pose2, Ksim)

    # Project the 3D point into the 2 Camera poses
    kp1 = camera1.project(point_3d)
    kp2 = camera2.project(point_3d)

    # Create Transforms of world frame with respect to camera frames
    Pose_1Tw = T_inv(poses[0].matrix())
    Pose_2Tw = T_inv(poses[1].matrix())

    # Undistort and nomalize camera measurements
    kp1_ud = cv2.undistortPoints(
        np.expand_dims(np.expand_dims(kp1.vector(), 0), 1), K, D)[:, 0, :]
    kp2_ud = cv2.undistortPoints(
        np.expand_dims(np.expand_dims(kp2.vector(), 0), 1), K, D)[:, 0, :]
Ejemplo n.º 9
0
    factor_graph = iSAM2Wrapper(poses[0].matrix(),
                                pose0_to_pose1_range=25,
                                relinearizeThreshold=0.1,
                                relinearizeSkip=1,
                                K=np.eye(3),
                                proj_noise_val=1.0 / 100)
    #factor_graph.set_Camera_matrix(np.eye(3))
    #factor_graph.set_Projection_noise(1.0/100)

    # Create a Factor Graph and Values to hold the new data
    #  Loop over the different poses, adding the observations to iSAM incrementally
    for i, pose in enumerate(poses):

        # Add factors for each landmark observation
        for j, point in enumerate(points):
            camera = gtsam.PinholeCameraCal3_S2(pose, Ksim)
            measurement = camera.project(point)
            undist_m = cv2.undistortPoints(
                np.expand_dims(
                    np.expand_dims(iSAM2Wrapper.Point2arr(measurement), 0), 1),
                K, D)[:, 0, :]
            #undist_pt = iSAM2Wrapper.arr2Point(undist_m)

            #m_pt = np.array([measurement.x(), measurement.y()])
            factor_graph.add_GenericProjectionFactorCal3_S2_factor(
                undist_m, i, np.array([j]))

        # Add an initial guess for the current pose
        # Intentionally initialize the variables off from the ground truth
        pose_est = pose.compose(
            gtsam.Pose3(gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25),