Ejemplo n.º 1
0
def gtsamOpt2PoseStampedarray(inputfname, pose_array):
    pointID = 0
    graph, initial = gtsam.readG2o(inputfname, True)
    # Add Prior on the first key
    priorModel = gtsam.noiseModel_Diagonal.Variances(
        vector6(1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4))

    print("Adding prior to g2o file ")
    graphWithPrior = graph
    firstKey = initial.keys().at(0)
    graphWithPrior.add(
        gtsam.PriorFactorPose3(firstKey, gtsam.Pose3(), priorModel))

    params = gtsam.GaussNewtonParams()
    params.setVerbosity(
        "Termination")  # this will show info about stopping conds
    optimizer = gtsam.GaussNewtonOptimizer(graphWithPrior, initial, params)
    result = optimizer.optimize()
    print("Optimization complete")

    print("initial error = ", graphWithPrior.error(initial))
    print("final error = ", graphWithPrior.error(result))

    resultPoses = gtsam.allPose3s(result)
    keys = resultPoses.keys()
    for i in range(keys.size()):
        posetmp = gstamPose2Transform(resultPoses.atPose3(keys.at(i)))
        posestampedtmp = PoseStamped()
        posestampedtmp.header.frame_id = str(keys.at(i))
        posestampedtmp.pose = posetmp
        pose_array.poseArray.append(posestampedtmp)
Ejemplo n.º 2
0
def plot_it(result):
    resultPoses = gtsam.allPose3s(result)
    xyz = [
        resultPoses.atPose3(i).translation() for i in range(resultPoses.size())
    ]
    x_ = [pose.x() for pose in xyz]
    y_ = [pose.y() for pose in xyz]
    z_ = [pose.z() for pose in xyz]

    fig = plt.figure()
    ax = fig.gca(projection='3d')
    for i in range(resultPoses.size()):
        plot.plot_pose3(1, resultPoses.atPose3(i))
        ax.text(x_[i], y_[i], z_[i], str(i))
    plt.plot(x_, y_, z_, 'k-')
    plt.show()
Ejemplo n.º 3
0
 def draw_graph(graph, values, fig_num=1):
     for i in range(graph.size()):
         factor = graph.at(i)
         fkeys = factor.keys()
         if fkeys.size() == 2:
             x = values.atPose3(fkeys.at(0)).translation()
             if key_label(fkeys.at(1))[0] is 'x':
                 l = values.atPose3(fkeys.at(1)).translation()
             else:
                 l = values.atPoint3(fkeys.at(1))
             plot_line(fig_num, x, l, 'b')
     poses = gtsam.allPose3s(values)
     for i in range(poses.size()):
         plot.plot_pose3(fig_num,
                         poses.atPose3(poses.keys().at(i)),
                         axis_length=2.0)
    # after all images have been processed
    plt.plot(x_val, y_val, label="Dead Reckoning x,y")
    plt.plot(x_val, z_val, label="Dead Reckoning x,z")
    plt.plot(z_val, y_val, label="Dead Reckoning y,z")
    plt.title('Dead Reckoning')
    plt.legend()
    plt.show()

    # if frame_count > 500:
    #     factor = gtsam.BetweenFactorPose3(frame_count-1, 0, gtsam.Pose3(), odom_noise)
    #     graph.add(factor)

    gtparams = gtsam.GaussNewtonParams()
    optimizer = gtsam.GaussNewtonOptimizer(graph, estimates, gtparams)
    result = optimizer.optimize()
    result_poses = gtsam.allPose3s(result)

    gtsam_x_val = []
    gtsam_y_val = []
    gtsam_z_val = []
    r_off = np.mat([[1., 0., 0.],
             [0., 0.91363181, - 0.40654264],
             [0., 0.40654264, 0.91363181]])
    from mpl_toolkits.mplot3d import Axes3D
    for k in range(result_poses.size()):
        plot.plot_pose3(1, result_poses.atPose3(k))
        p = result_poses.atPose3(k)
        t = p.translation()
        # r = p.roation().matrix()
        # print(t)
        t = np.array(np.mat([t.x(), t.y(), t.z()]) * r_off).reshape(3)