def setObj(self): bus,_,_,_, _,_,_,_,winds,sigma,gens = self.data + self.aux p, a, D, t, m, s = self.var cost = {b: bus[b]['cost'] for b in bus if b in gens} sumvar = sum(sigma[b]**2 for b in winds) if self.solver == 'cplex': ng = len(gens) nv = self.M.variables.get_num() cost = [2*cost[i] for i in gens] + [2*sumvar*cost[i] for i in gens] + \ [0.0]*(nv-2*ng) self.M.objective.set_quadratic(cost) self.M.set_results_stream(None) else: self.M.setObjective(qs(cost[i]*(p[i]*p[i] + sumvar*a[i]*a[i]) for i in gens))
def add_cut(self, it): _,branch,_,Binv, _,_,_,_,winds,sigma,_ = self.data + self.aux p, a, D, t, m, s = self.var index = self.worst['line'] ID = branch[index]['id'] i,j = branch[index]['ij'] y = branch[index]['y'] if self.solver == 'cplex': Di, Dj = self.sol.get_values([D[i], D[j]]) sij = 's{}'.format(ID) Bij = {k: Binv[k][i]-Binv[k][j] for k in winds} rhs = y**2*sum([sigma[k]**2*Bij[k]*(Bij[k]-Di+Dj) for k in winds]) coeff = y**2*sum([sigma[k]**2*(Bij[k]-Di+Dj) for k in winds]) x = arr([y*(Bij[k]-Di+Dj)*sigma[k] for k in winds]) #self.M.linear_constraints.add(lin_expr = [sp(ind = [sij], val = [1.0])], #rhs = [0], names=['cut_help%d'%it], senses='G') self.M.linear_constraints.add(lin_expr = [sp(ind = [sij, D[i], D[j]], val = [norm(x), coeff, -coeff])], rhs = [rhs], names=['cut_%d'%it], senses='G') else: x = arr([y*(Binv[k][i]-Binv[k][j]-D[i].x+D[j].x)*sigma[k] for k in winds]) self.M.addConstr(s[ID] >= 0, 'cut_%d_help'%(it+1)) self.M.addConstr(qs(x[l]*y*(Binv[k][i]-Binv[k][j]-D[i]+D[j])*sigma[k] for l,k in enumerate(winds)) <= s[ID]*norm(x), 'cut_%d'%it)
def addCons(self): bus,branch,Bbus,_, line_nu,gen_nu, n,_,d,mu,winds,sigma,gens = self.data + \ [self.line_nu, self.gen_nu] + self.aux if self.verbose: print 'defining constraints' p, a, D, t, m, s = self.var sumvar = sum(sigma[b]**2 for b in winds) if self.solver == 'cplex': ng = len(gens) self.M.linear_constraints.add(lin_expr = [sp(ind = a, val = [1.0]*ng)], rhs = [1.0], names=['sum_alpha']) self.M.linear_constraints.add(lin_expr = [sp(ind = p, val = [1.0]*ng)], rhs = [sum(d)-sum(mu)], names=['power_balance']) for i in xrange(n-1): Bi = Bbus[i,:-1].tocoo() J,V = Bi.col, Bi.data if i in gens: pi, ai, Di, ti = 'p_%d'%i, 'a_%d'%i, 'delta_%d'%i, 'theta_%d'%i self.M.linear_constraints.add(lin_expr = [sp(ind = list(D[J])+[ai], val = list(V)+[-1]), sp(ind = list(t[J])+[pi], val = list(V)+[-1])], rhs=[0, mu[i]-d[i]], names=[Di, ti], senses='EE') self.M.linear_constraints.add(lin_expr = [sp(ind = [pi,ai], val = [1, sumvar**.5*gen_nu]), sp(ind = [pi,ai], val = [1, -sumvar**.5*gen_nu])], rhs=[bus[i]['pmax'], bus[i]['pmin']], names=['gen+_%d'%i, 'gen-_%d'%i], senses='LG') else: self.M.linear_constraints.add(lin_expr = [sp(ind = D[J], val = V), sp(ind = t[J], val = V)], rhs=[0, mu[i]-d[i]], names=['delta_%d'%i, 'theta_%d'%i], senses='EE') self.M.linear_constraints.add(lin_expr = [sp(ind = [D[n-1]], val = [1.0]), sp(ind = [t[n-1]], val = [1.0])], rhs = [0,0], names=['delta_%d'%(n-1), 'theta_%d'%(n-1)], senses='EE') for line in branch: ID = line['id'] ij = line['ij'] i,j = ij mij, sij = 'm{}'.format(ID), 's{}'.format(ID) self.M.linear_constraints.add(lin_expr = [sp(ind = [mij, t[i], t[j]], val = [1.0, -line['y'], line['y']])], rhs = [0], names=['line_avg_{}'.format(ID)], senses='E') self.M.linear_constraints.add(lin_expr = [sp(ind = [mij, sij], val = [-1.0, line_nu]), sp(ind = [mij, sij], val = [1.0, line_nu])], names=['line+_{}'.format(ID), 'line-_{}'.format(ID)], rhs = [line['fmax'], line['fmax']], senses='LL') else: # gurobi is much nicer self.M.addConstr(qs(a[i] for i in gens) == 1, 'sum_alpha_1') self.M.addConstr(qs(p[i] for i in gens) + sum(mu) == sum(d), 'power_balance') for i in xrange(n-1): Bi = Bbus[i,:-1].tocoo() Bi = zip(Bi.col, Bi.data) if i in gens: self.M.addConstr(qs(v*D[j] for j,v in Bi) == a[i], 'delta_%d'%i) self.M.addConstr(qs(v*t[j] for j,v in Bi) == p[i]+mu[i]-d[i], 'theta_%d'%i) self.M.addConstr(sumvar**.5*a[i]*gen_nu <= bus[i]['pmax']-p[i], 'gen+_%d'%i) self.M.addConstr(sumvar**.5*a[i]*gen_nu <= -bus[i]['pmin']+p[i], 'gen-_%d'%i) else: self.M.addConstr(qs(v*D[j] for j,v in Bi) == 0, 'delta_%d'%i) self.M.addConstr(qs(v*t[j] for j,v in Bi) == mu[i]-d[i], 'theta_%d'%i) self.M.addConstr(D[n-1] == 0, 'delta') self.M.addConstr(t[n-1] == 0, 'theta') for line in branch: ID = line['id'] ij = line['ij'] i,j = ij self.M.addConstr(m[ID] == line['y']*(t[i]-t[j]), 'line_avg_{}'.format(ID)) self.M.addConstr(s[ID]*line_nu <= line['fmax'] - m[ID], 'line+_{}'.format(ID)) self.M.addConstr(s[ID]*line_nu <= line['fmax'] + m[ID], 'line-_{}'.format(ID))