Ejemplo n.º 1
0
def test_cov_cluster_2groups():
    # comparing cluster robust standard errors to Peterson
    # requires Petersen's test_data
    # http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt
    import os

    cur_dir = os.path.abspath(os.path.dirname(__file__))
    fpath = os.path.join(cur_dir, "test_data.txt")
    pet = np.genfromtxt(fpath)
    endog = pet[:, -1]
    group = pet[:, 0].astype(int)
    time = pet[:, 1].astype(int)
    exog = add_constant(pet[:, 2], prepend=True)
    res = OLS(endog, exog).fit()

    cov01, covg, covt = sw.cov_cluster_2groups(res, group, group2=time)

    # Reference number from Petersen
    # http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.htm

    bse_petw = [0.0284, 0.0284]
    bse_pet0 = [0.0670, 0.0506]
    bse_pet1 = [0.0234, 0.0334]  # year
    bse_pet01 = [0.0651, 0.0536]  # firm and year
    bse_0 = sw.se_cov(covg)
    bse_1 = sw.se_cov(covt)
    bse_01 = sw.se_cov(cov01)
    # print res.HC0_se, bse_petw - res.HC0_se
    # print bse_0, bse_0 - bse_pet0
    # print bse_1, bse_1 - bse_pet1
    # print bse_01, bse_01 - bse_pet01
    assert_almost_equal(bse_petw, res.HC0_se, decimal=4)
    assert_almost_equal(bse_0, bse_pet0, decimal=4)
    assert_almost_equal(bse_1, bse_pet1, decimal=4)
    assert_almost_equal(bse_01, bse_pet01, decimal=4)
Ejemplo n.º 2
0
def test_cov_cluster_2groups():
    #comparing cluster robust standard errors to Peterson
    #requires Petersen's test_data
    #http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt
    import os
    cur_dir = os.path.abspath(os.path.dirname(__file__))
    fpath = os.path.join(cur_dir, "test_data.txt")
    pet = np.genfromtxt(fpath)
    endog = pet[:, -1]
    group = pet[:, 0].astype(int)
    time = pet[:, 1].astype(int)
    exog = add_constant(pet[:, 2], prepend=True)
    res = OLS(endog, exog).fit()

    cov01, covg, covt = sw.cov_cluster_2groups(res, group, group2=time)

    #Reference number from Petersen
    #http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.htm

    bse_petw = [0.0284, 0.0284]
    bse_pet0 = [0.0670, 0.0506]
    bse_pet1 = [0.0234, 0.0334]  #year
    bse_pet01 = [0.0651, 0.0536]  #firm and year
    bse_0 = sw.se_cov(covg)
    bse_1 = sw.se_cov(covt)
    bse_01 = sw.se_cov(cov01)
    #print res.HC0_se, bse_petw - res.HC0_se
    #print bse_0, bse_0 - bse_pet0
    #print bse_1, bse_1 - bse_pet1
    #print bse_01, bse_01 - bse_pet01
    assert_almost_equal(bse_petw, res.HC0_se, decimal=4)
    assert_almost_equal(bse_0, bse_pet0, decimal=4)
    assert_almost_equal(bse_1, bse_pet1, decimal=4)
    assert_almost_equal(bse_01, bse_pet01, decimal=4)
Ejemplo n.º 3
0
import gwstatsmodels.api as sm

import gwstatsmodels.sandbox.panel.sandwich_covariance as sw
import gwstatsmodels.sandbox.panel.sandwich_covariance_generic as swg

#requires Petersen's test_data
#http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt
pet = np.genfromtxt("test_data.txt")
endog = pet[:, -1]
group = pet[:, 0].astype(int)
time = pet[:, 1].astype(int)
exog = sm.add_constant(pet[:, 2], prepend=True)
res = sm.OLS(endog, exog).fit()

cov01, covg, covt = sw.cov_cluster_2groups(res, group, group2=time)

#Reference number from Petersen
#http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.htm

bse_petw = [0.0284, 0.0284]
bse_pet0 = [0.0670, 0.0506]
bse_pet1 = [0.0234, 0.0334]  #year
bse_pet01 = [0.0651, 0.0536]  #firm and year
bse_0 = sw.se_cov(covg)
bse_1 = sw.se_cov(covt)
bse_01 = sw.se_cov(cov01)
print res.HC0_se, bse_petw - res.HC0_se
print bse_0, bse_0 - bse_pet0
print bse_1, bse_1 - bse_pet1
print bse_01, bse_01 - bse_pet01
Ejemplo n.º 4
0
import gwstatsmodels.api as sm

import gwstatsmodels.sandbox.panel.sandwich_covariance as sw
import gwstatsmodels.sandbox.panel.sandwich_covariance_generic as swg

#requires Petersen's test_data
#http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt
pet = np.genfromtxt("test_data.txt")
endog = pet[:,-1]
group = pet[:,0].astype(int)
time = pet[:,1].astype(int)
exog = sm.add_constant(pet[:,2], prepend=True)
res = sm.OLS(endog, exog).fit()

cov01, covg, covt = sw.cov_cluster_2groups(res, group, group2=time)

#Reference number from Petersen
#http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.htm

bse_petw = [0.0284, 0.0284]
bse_pet0 = [0.0670, 0.0506]
bse_pet1 = [0.0234, 0.0334]  #year
bse_pet01 = [0.0651, 0.0536]  #firm and year
bse_0 = sw.se_cov(covg)
bse_1 = sw.se_cov(covt)
bse_01 = sw.se_cov(cov01)
print res.HC0_se, bse_petw - res.HC0_se
print bse_0, bse_0 - bse_pet0
print bse_1, bse_1 - bse_pet1
print bse_01, bse_01 - bse_pet01