Ejemplo n.º 1
0
class local_env(object):
    def __init__(self, env_id):
        remote_base = 'http://127.0.0.1:5000'
        self.client = Client(remote_base)
        self.instance_id = self.client.env_create(env_id)

    def reset(self):
        obs = self.client.env_reset(self.instance_id)
        return obs

    def step(self, action):
        #print("---sssss---------",type(action),action.item())
        [observation, reward, done,
         info] = self.client.env_step(self.instance_id, action.item(), True)
        return observation, reward, done, info

    def action_space_sample(self):
        action = self.client.env_action_space_sample(self.instance_id)
        return action

    def action_space_info(self):
        info = self.client.env_action_space_info(self.instance_id)
        return info

    def observation_space_info(self):
        info = self.client.env_observation_space_info(self.instance_id)
        return info
Ejemplo n.º 2
0
from gym_http_client import Client

class RandomDiscreteAgent(object):
    def __init__(self, n):
        self.n = n

    def act(self, observation, reward, done):
        return np.random.randint(self.n)

if __name__ == '__main__':
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # Set up client
    remote_base = 'http://127.0.0.1:5000'
    client = Client(remote_base)

    # Set up environment
    env_id = 'CartPole-v0'
    instance_id = client.env_create(env_id)

    # Set up agent
    action_space_info = client.env_action_space_info(instance_id)
    agent = RandomDiscreteAgent(action_space_info['n'])

    # Run experiment, with monitor
    outdir = '/tmp/random-agent-results'
    client.env_monitor_start(instance_id, outdir, force=True)

    episode_count = 100
    max_steps = 200
Ejemplo n.º 3
0
class RandomDiscreteAgent(object):
    def __init__(self, n):
        self.n = n

    def act(self, observation, reward, done):
        return np.random.randint(self.n)


if __name__ == '__main__':
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # Set up client
    remote_base = 'http://127.0.0.1:5000'
    client = Client(remote_base)

    # Set up environment
    env_id = 'CartPole-v0'
    instance_id = client.env_create(env_id)

    # Set up agent
    action_space_info = client.env_action_space_info(instance_id)
    agent = RandomDiscreteAgent(action_space_info['n'])

    # Run experiment, with monitor
    outdir = '/tmp/random-agent-results'
    client.env_monitor_start(instance_id,
                             outdir,
                             force=True,
                             resume=False,
Ejemplo n.º 4
0
 def __init__(self, env_id):
     remote_base = 'http://127.0.0.1:5000'
     self.client = Client(remote_base)
     self.instance_id = self.client.env_create(env_id)
Ejemplo n.º 5
0
import logging

from gym_http_client import Client

class RandomDiscreteAgent(object):
    def __init__(self, n):
        self.n = n

if __name__ == '__main__':
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # Set up client
    remote_base = 'http://127.0.0.1:5000'
    client = Client(remote_base)

    # Set up environment
    env_id = 'CartPole-v0'
    instance_id = client.env_create(env_id)

    # Set up agent
    action_space_info = client.env_action_space_info(instance_id)
    agent = RandomDiscreteAgent(action_space_info['n'])

    # Run experiment, with monitor
    outdir = '/tmp/random-agent-results'
    client.env_monitor_start(instance_id, outdir, force=True, resume=False, video_callable=False)
    
    episode_count = 100
    max_steps = 200
    reward = 0
Ejemplo n.º 6
0
class RandomDiscreteAgent(object):
    def __init__(self, n):
        self.n = n

    def act(self, observation, reward, done):
        return np.random.randint(self.n)


if __name__ == '__main__':
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)

    # Set up client
    remote_base = 'http://127.0.0.1:5000'
    client = Client(remote_base)

    # Set up environment
    env_id = 'CartPole-v0'
    instance_id = client.env_create(env_id)

    # Set up agent
    action_space_info = client.env_action_space_info(instance_id)
    agent = RandomDiscreteAgent(action_space_info['n'])

    # Run experiment, with monitor
    outdir = '/tmp/random-agent-results'
    client.env_monitor_start(instance_id, outdir, force=True)

    episode_count = 100
    max_steps = 200