Ejemplo n.º 1
0
    def test_cook_finite_strain_linear_elasticity(self):
        # --- VALUES
        # -------
        P_min = 1000.
        P_max = 5.e6 / (16.e-3)
        # P_min = 0.01
        # P_max = 1. / 16.
        # time_steps = np.linspace(P_min, P_max, 20)[:-3]
        time_steps = np.linspace(P_min, P_max, 5)
        print(time_steps)
        iterations = 10

        # --- LOAD
        def volumetric_load(time: float, position: ndarray):
            return 0

        loads = [Load(volumetric_load, 0), Load(volumetric_load, 1)]

        # --- BC
        def pull(time: float, position: ndarray) -> float:
            return time

        def fixed(time: float, position: ndarray) -> float:
            return 0.0

        boundary_conditions = [
            BoundaryCondition("RIGHT", pull, BoundaryType.PRESSURE, 1),
            BoundaryCondition("LEFT", fixed, BoundaryType.DISPLACEMENT, 1),
            BoundaryCondition("LEFT", fixed, BoundaryType.DISPLACEMENT, 0),
        ]

        # --- MESH
        mesh_file_path = "meshes/cook_quadrangles_1.msh"
        mesh_file_path = "meshes/cook_quadrangles_0.msh"
        mesh_file_path = "meshes/cook_triangles_0.msh"
        mesh_file_path = "meshes/cook_20.geof"
        # mesh_file_path = "meshes/cook_5.geof"

        # --- FIELD
        # displacement = Field(label="U", field_type=FieldType.DISPLACEMENT_SMALL_STRAIN_PLANE_STRAIN)
        displacement = Field(label="U", field_type=FieldType.DISPLACEMENT_LARGE_STRAIN_PLANE_STRAIN)

        # --- FINITE ELEMENT
        finite_element = FiniteElement(
            element_type=ElementType.HDG_EQUAL,
            polynomial_order=1,
            euclidean_dimension=displacement.euclidean_dimension,
            basis_type=BasisType.MONOMIAL,
        )

        # --- PROBLEM
        p = Problem(
            mesh_file_path=mesh_file_path,
            field=displacement,
            finite_element=finite_element,
            time_steps=time_steps,
            iterations=iterations,
            boundary_conditions=boundary_conditions,
            loads=loads,
            quadrature_type=QuadratureType.GAUSS,
            tolerance=1.0e-4,
            res_folder_path=get_current_res_folder_path()
        )

        # --- MATERIAL
        parameters = {"YoungModulus": 70.0e9, "PoissonRatio": 0.4999}
        stabilization_parameter = 0.0005 * parameters["YoungModulus"] / (1.0 + parameters["PoissonRatio"])
        # stabilization_parameter = parameters["YoungModulus"] / (1.0 + parameters["PoissonRatio"])
        mat = Material(
            nq=p.mesh.number_of_cell_quadrature_points_in_mesh,
            library_path="behaviour/src/libBehaviour.so",
            library_name="Voce",
            hypothesis=mgis_bv.Hypothesis.PLANESTRAIN,
            stabilization_parameter=stabilization_parameter,
            lagrange_parameter=parameters["YoungModulus"],
            field=displacement,
            parameters=None,
        )

        # --- SOLVE
        solve_newton_2(p, mat, verbose=False, debug_mode=DebugMode.NONE)
        # solve_newton_exact(p, mat, verbose=False, debug_mode=DebugMode.NONE)

        res_folder = "res"
        from os import walk, path
        import matplotlib.pyplot as plt
        from matplotlib.colors import LinearSegmentedColormap

        def __plot(column: int):

            _, _, filenames = next(walk(res_folder))
            for time_step_index in range(len(time_steps)):
                for filename in filenames:
                    if "{}".format(time_step_index).zfill(6) in filename and "qdp" in filename:
                        hho_file_path = path.join(res_folder, filename)
                        with open(hho_file_path, "r") as hho_res_file:
                            fig, ax0d = plt.subplots(nrows=1, ncols=1)
                            c_hho = hho_res_file.readlines()
                            field_label = c_hho[0].split(",")[column]
                            number_of_points = len(c_hho) - 1
                            eucli_d = displacement.euclidean_dimension
                            points = np.zeros((eucli_d, number_of_points), dtype=real)
                            field_vals = np.zeros((number_of_points,), dtype=real)
                            for l_count, line in enumerate(c_hho[1:]):
                                x_coordinates = float(line.split(",")[0])
                                y_coordinates = float(line.split(",")[1])
                                field_value = float(line.split(",")[column])
                                points[0, l_count] += x_coordinates
                                points[1, l_count] += y_coordinates
                                field_vals[l_count] += field_value
                            x, y = points
                            colors = [(0, 0, 1), (0, 1, 1), (0, 1, 0), (1, 1, 0), (1, 0, 0)]
                            perso = LinearSegmentedColormap.from_list("perso", colors, N=1000)
                            vmin = min(field_vals[:])
                            vmax = max(field_vals[:])
                            # vmin = -3900.e6
                            # vmax = 627.e6
                            levels = np.linspace(vmin, vmax, 50, endpoint=True)
                            ticks = np.linspace(vmin, vmax, 10, endpoint=True)
                            datad = ax0d.tricontourf(x, y, field_vals[:], cmap=perso, levels=levels)
                            ax0d.get_xaxis().set_visible(False)
                            ax0d.get_yaxis().set_visible(False)
                            ax0d.set_xlabel("map of the domain $\Omega$")
                            cbar = fig.colorbar(datad, ax=ax0d, ticks=ticks)
                            cbar.set_label("{}".format(field_label), rotation=270, labelpad=15.0)
                            # plt.savefig("/home/dsiedel/Projects/pythhon/plots/{}.png".format(time_step))
                            plt.show()

        __plot(15)
    def test_square_finite_strain_isotropic_voce_hardening(self):
        # --- VALUES
        spacing = 3
        time_steps_1 = np.linspace(0.0, 7.0e-3, spacing)
        time_steps_2 = np.linspace(7.0e-3, -1.0e-2, spacing)
        time_steps_3 = np.linspace(-1.0e-2, 2.0e-2, spacing)
        time_steps_4 = np.linspace(2.0e-2, -3.0e-2, spacing)
        time_steps_5 = np.linspace(-3.0e-2, 4.0e-2, spacing)
        time_steps = []
        for ts in [
                time_steps_1, time_steps_2[1:], time_steps_3[1:],
                time_steps_4[1:], time_steps_5[1:]
        ]:
            # time_steps += list(np.sqrt(2.)*ts)
            time_steps += list(ts)
        time_steps = np.array(time_steps)
        time_steps = np.linspace(0.0, 4.0e-2, 11, endpoint=True)
        iterations = 100

        # --- LOAD
        def volumetric_load(time: float, position: ndarray):
            return 0

        loads = [Load(volumetric_load, 0), Load(volumetric_load, 1)]

        # --- BC
        def pull(time: float, position: ndarray) -> float:
            return time

        def fixed(time: float, position: ndarray) -> float:
            return 0.0

        boundary_conditions = [
            BoundaryCondition("RIGHT", pull, BoundaryType.DISPLACEMENT, 0),
            BoundaryCondition("LEFT", fixed, BoundaryType.DISPLACEMENT, 0),
            BoundaryCondition("BOTTOM", fixed, BoundaryType.DISPLACEMENT, 1),
        ]

        # --- MESH
        mesh_file_path = (
            # "meshes/triang_r.geof"
            # "meshes/triang_2.geof"
            # "meshes/square_1.geof"
            # "meshes/pentag_1.geof"
            # "meshes/triangles_0.msh"
            "meshes/quadrangles_2.msh"
            # "meshes/quadrangles_0.msh"
            # "meshes/triangles_3.msh"
            # "meshes/triang_3.geof"
        )

        # --- FIELD
        displacement = Field(
            label="U",
            field_type=FieldType.DISPLACEMENT_LARGE_STRAIN_PLANE_STRAIN)

        # --- FINITE ELEMENT
        finite_element = FiniteElement(
            element_type=ElementType.HDG_EQUAL,
            polynomial_order=1,
            euclidean_dimension=displacement.euclidean_dimension,
            basis_type=BasisType.MONOMIAL,
        )

        # --- PROBLEM
        p = Problem(mesh_file_path=mesh_file_path,
                    field=displacement,
                    finite_element=finite_element,
                    time_steps=time_steps,
                    iterations=iterations,
                    boundary_conditions=boundary_conditions,
                    loads=loads,
                    quadrature_type=QuadratureType.GAUSS,
                    tolerance=1.0e-4,
                    res_folder_path=get_current_res_folder_path())

        # --- MATERIAL
        parameters = {
            "YoungModulus": 70.0e9,
            "PoissonRatio": 0.34,
            "HardeningSlope": 10.0e9,
            "YieldStress": 300.0e6
        }
        stabilization_parameter = parameters["YoungModulus"] / (
            1.0 + parameters["PoissonRatio"])
        mat = Material(
            nq=p.mesh.number_of_cell_quadrature_points_in_mesh,
            library_path="behaviour/src/libBehaviour.so",
            library_name="Voce",
            hypothesis=mgis_bv.Hypothesis.PLANESTRAIN,
            stabilization_parameter=stabilization_parameter,
            lagrange_parameter=parameters["YoungModulus"],
            field=displacement,
            parameters=None,
            # finite_strains=False
        )

        # --- SOLVE
        solve_newton_2(p, mat, verbose=False)
        # solve_newton_exact(p, mat, verbose=False)

        # --- POST PROCESSING
        from pp.plot_data import plot_data

        mtest_file_path = "mtest/finite_strain_isotropic_voce_hardening.res"
        hho_res_dir_path = "res"
        number_of_time_steps = len(time_steps)
        m_x_inedx = 1
        m_y_index = 6
        d_x_inedx = 4
        d_y_inedx = 9
        plot_data(mtest_file_path, hho_res_dir_path, number_of_time_steps,
                  m_x_inedx, m_y_index, d_x_inedx, d_y_inedx)
        m_x_inedx = 1
        m_y_index = 7
        d_x_inedx = 4
        d_y_inedx = 10
        plot_data(mtest_file_path, hho_res_dir_path, number_of_time_steps,
                  m_x_inedx, m_y_index, d_x_inedx, d_y_inedx)
        m_x_inedx = 1
        m_y_index = 8
        d_x_inedx = 4
        d_y_inedx = 11
        plot_data(mtest_file_path, hho_res_dir_path, number_of_time_steps,
                  m_x_inedx, m_y_index, d_x_inedx, d_y_inedx)
        m_x_inedx = 1
        m_y_index = 9
        d_x_inedx = 4
        d_y_inedx = 12
        plot_data(mtest_file_path, hho_res_dir_path, number_of_time_steps,
                  m_x_inedx, m_y_index, d_x_inedx, d_y_inedx)
Ejemplo n.º 3
0
    def test_problem_build(self, verbose=True):
        # --- VALUES
        p_min = 0.0
        p_max = 1. / 16.
        time_steps = np.linspace(p_min, p_max, 10)
        iterations = 100

        # --- LOAD
        def volumetric_load(time: float, position: ndarray):
            return 0

        loads = [Load(volumetric_load, 0), Load(volumetric_load, 1)]

        # --- BC
        def pull(time: float, position: ndarray) -> float:
            return time

        def fixed(time: float, position: ndarray) -> float:
            return 0.0

        boundary_conditions = [
            BoundaryCondition("RIGHT", pull, BoundaryType.PRESSURE, 1),
            BoundaryCondition("LEFT", fixed, BoundaryType.DISPLACEMENT, 0),
            BoundaryCondition("LEFT", fixed, BoundaryType.DISPLACEMENT, 1),
        ]

        # --- MESH
        mesh_file_path = ("meshes/triang_r.geof")

        # --- FIELD
        displacement = Field(
            label="U",
            field_type=FieldType.DISPLACEMENT_SMALL_STRAIN_PLANE_STRAIN,
        )

        # --- FINITE ELEMENT
        finite_element = FiniteElement(element_type=ElementType.HDG_EQUAL,
                                       polynomial_order=1,
                                       euclidean_dimension=2,
                                       basis_type=BasisType.MONOMIAL)

        # --- PROBLEM
        p = Problem(mesh_file_path=mesh_file_path,
                    field=displacement,
                    finite_element=finite_element,
                    time_steps=time_steps,
                    iterations=iterations,
                    boundary_conditions=boundary_conditions,
                    loads=loads,
                    quadrature_type=QuadratureType.GAUSS,
                    tolerance=1.0e-4,
                    res_folder_path=get_current_res_folder_path())

        # --- MATERIAL
        parameters = {"YoungModulus": 70.0e9, "PoissonRatio": 0.34}
        stabilization_parameter = parameters["YoungModulus"] / (
            1.0 + parameters["PoissonRatio"])
        mat = Material(
            nq=p.mesh.number_of_cell_quadrature_points_in_mesh,
            library_path=
            "../../test_mechanics/test_element/2D/test_2D_small_strain_linear_elasticity/behaviour/src/libBehaviour.so",
            library_name="Elasticity",
            hypothesis=mgis_bv.Hypothesis.PLANESTRAIN,
            stabilization_parameter=stabilization_parameter,
            lagrange_parameter=parameters["YoungModulus"],
            field=displacement,
            parameters=None,
            # finite_strains=False
        )

        # --- SOLVE
        solve_newton_2(p, mat)
Ejemplo n.º 4
0
    def test_sphere_finite_strain(self):
        # --- VALUES
        time_steps = np.linspace(0.0, 6.0e-3, 150)
        iterations = 100

        # --- LOAD
        def volumetric_load(time: float, position: ndarray):
            return 0

        loads = [
            Load(volumetric_load, 0),
            Load(volumetric_load, 1),
            Load(volumetric_load, 2)
        ]

        # --- BC
        def pull(time: float, position: ndarray) -> float:
            return time

        def fixed(time: float, position: ndarray) -> float:
            return 0.0

        boundary_conditions = [
            BoundaryCondition("BOTTOM", pull, BoundaryType.DISPLACEMENT, 1),
            BoundaryCondition("RIGHT", fixed, BoundaryType.DISPLACEMENT, 2),
            BoundaryCondition("LEFT", fixed, BoundaryType.DISPLACEMENT, 0),
            BoundaryCondition("INTERIOR", fixed, BoundaryType.PRESSURE, 0),
        ]

        # --- MESH
        mesh_file_path = "meshes/sphere_triangles_0.msh"
        # mesh_file_path = "meshes/ssna.msh"
        # mesh_file_path = "meshes/ssna_quad.msh"
        # mesh_file_path = "meshes/ssna303_triangles_1.msh"

        # --- FIELD
        displacement = Field(label="U",
                             field_type=FieldType.DISPLACEMENT_LARGE_STRAIN)

        # --- FINITE ELEMENT
        finite_element = FiniteElement(
            element_type=ElementType.HDG_EQUAL,
            polynomial_order=1,
            euclidean_dimension=displacement.euclidean_dimension,
            basis_type=BasisType.MONOMIAL,
        )

        # --- PROBLEM
        p = Problem(mesh_file_path=mesh_file_path,
                    field=displacement,
                    finite_element=finite_element,
                    time_steps=time_steps,
                    iterations=iterations,
                    boundary_conditions=boundary_conditions,
                    loads=loads,
                    quadrature_type=QuadratureType.GAUSS,
                    tolerance=1.0e-4,
                    res_folder_path=get_current_res_folder_path())

        # --- MATERIAL
        parameters = {
            "YoungModulus": 70.0e9,
            "PoissonRatio": 0.34,
            "HardeningSlope": 10.0e9,
            "YieldStress": 300.0e6
        }
        # stabilization_parameter = 0.001 * parameters["YoungModulus"] / (1.0 + parameters["PoissonRatio"])
        stabilization_parameter = parameters["YoungModulus"] / (
            1.0 + parameters["PoissonRatio"])
        mat = Material(
            nq=p.mesh.number_of_cell_quadrature_points_in_mesh,
            library_path="behaviour/src/libBehaviour.so",
            library_name="Voce",
            # library_name="FiniteStrainIsotropicLinearHardeningPlasticity",
            hypothesis=mgis_bv.Hypothesis.TRIDIMENSIONAL,
            stabilization_parameter=stabilization_parameter,
            lagrange_parameter=parameters["YoungModulus"],
            field=displacement,
            parameters=None,
        )

        # --- SOLVE
        solve_newton_2(p, mat, verbose=False, debug_mode=DebugMode.NONE)
        # solve_newton_exact(p, mat, verbose=False, debug_mode=DebugMode.NONE)

        from pp.plot_ssna import plot_det_f
Ejemplo n.º 5
0
    def test_square_small_strain_linear_elasticity(self):
        # --- VALUES
        u_min = 0.0
        u_max = 0.008
        time_steps = np.linspace(u_min, u_max, 9)
        iterations = 100

        # --- LOAD
        def volumetric_load(time: float, position: ndarray):
            return 0

        loads = [Load(volumetric_load, 0), Load(volumetric_load, 1)]

        # --- BC
        def pull(time: float, position: ndarray) -> float:
            return time

        def fixed(time: float, position: ndarray) -> float:
            return 0.0

        boundary_conditions = [
            BoundaryCondition("RIGHT", pull, BoundaryType.DISPLACEMENT, 0),
            BoundaryCondition("LEFT", fixed, BoundaryType.DISPLACEMENT, 0),
            BoundaryCondition("BOTTOM", fixed, BoundaryType.DISPLACEMENT, 1),
        ]

        # --- MESH
        mesh_file_path = (
            # "meshes/triang_r.geof"
            # "meshes/triang_2.geof"
            # "meshes/square_1.geof"
            # "meshes/pentag_1.geof"
            # "meshes/triangles_0.msh"
            "meshes/quadrangles_0.msh"
            # "meshes/triang_3.geof"
        )

        # --- FIELD
        displacement = Field(
            label="U",
            field_type=FieldType.DISPLACEMENT_SMALL_STRAIN_PLANE_STRAIN)

        # --- FINITE ELEMENT
        finite_element = FiniteElement(
            element_type=ElementType.HDG_EQUAL,
            polynomial_order=1,
            euclidean_dimension=displacement.euclidean_dimension,
            basis_type=BasisType.MONOMIAL,
        )

        # --- PROBLEM
        p = Problem(mesh_file_path=mesh_file_path,
                    field=displacement,
                    finite_element=finite_element,
                    time_steps=time_steps,
                    iterations=iterations,
                    boundary_conditions=boundary_conditions,
                    loads=loads,
                    quadrature_type=QuadratureType.GAUSS,
                    tolerance=1.0e-4,
                    res_folder_path=get_current_res_folder_path())

        # --- MATERIAL
        parameters = {"YoungModulus": 70.0e9, "PoissonRatio": 0.34}
        stabilization_parameter = parameters["YoungModulus"] / (
            1.0 + parameters["PoissonRatio"])
        mat = Material(
            nq=p.mesh.number_of_cell_quadrature_points_in_mesh,
            library_path="behaviour/src/libBehaviour.so",
            library_name="Elasticity",
            hypothesis=mgis_bv.Hypothesis.PLANESTRAIN,
            stabilization_parameter=stabilization_parameter,
            lagrange_parameter=parameters["YoungModulus"],
            field=displacement,
            parameters=None,
        )

        # --- SOLVE
        solve_newton_2(p, mat, verbose=False)
        # solve_newton_exact(p, mat, verbose=False)

        # --- POST PROCESSING
        from pp.plot_data import plot_data

        mtest_file_path = "mtest/small_strain_linear_elasticity.res"
        hho_res_dir_path = "res"
        number_of_time_steps = len(time_steps)
        m_x_inedx = 1
        m_y_index = 5
        d_x_inedx = 4
        d_y_inedx = 8
        plot_data(mtest_file_path, hho_res_dir_path, number_of_time_steps,
                  m_x_inedx, m_y_index, d_x_inedx, d_y_inedx)
        m_x_inedx = 1
        m_y_index = 6
        d_x_inedx = 4
        d_y_inedx = 9
        plot_data(mtest_file_path, hho_res_dir_path, number_of_time_steps,
                  m_x_inedx, m_y_index, d_x_inedx, d_y_inedx)
        m_x_inedx = 1
        m_y_index = 7
        d_x_inedx = 4
        d_y_inedx = 10
        plot_data(mtest_file_path, hho_res_dir_path, number_of_time_steps,
                  m_x_inedx, m_y_index, d_x_inedx, d_y_inedx)
        m_x_inedx = 1
        m_y_index = 8
        d_x_inedx = 4
        d_y_inedx = 11
        plot_data(mtest_file_path, hho_res_dir_path, number_of_time_steps,
                  m_x_inedx, m_y_index, d_x_inedx, d_y_inedx)
Ejemplo n.º 6
0
    def test_cook_finite_strain_voce_isotropic_hardening(self):
        # --- VALUES
        time_steps = np.linspace(0.0, 7.0e-3, 50)
        time_steps = np.linspace(0.0, 14.e-3, 150)
        P_min = 0.0
        P_max = 5.e6 / (16.e-3)
        # P_max = 3.e8
        # P_min = 0.01
        # P_max = 1. / 16.
        # time_steps = np.linspace(P_min, P_max, 20)[:-3]
        time_steps = np.linspace(P_min, P_max, 10)
        time_steps = list(time_steps) + [P_max]
        print(time_steps)
        iterations = 10

        # --- LOAD
        def volumetric_load(time: float, position: ndarray):
            return 0

        loads = [Load(volumetric_load, 0), Load(volumetric_load, 1)]

        # --- BC
        def pull(time: float, position: ndarray) -> float:
            return time

        def fixed(time: float, position: ndarray) -> float:
            return 0.0

        boundary_conditions = [
            BoundaryCondition("RIGHT", pull, BoundaryType.PRESSURE, 1),
            BoundaryCondition("LEFT", fixed, BoundaryType.DISPLACEMENT, 1),
            BoundaryCondition("LEFT", fixed, BoundaryType.DISPLACEMENT, 0),
        ]

        # --- MESH
        mesh_file_path = "meshes/cook_5.geof"
        # mesh_file_path = "meshes/cook_30.geof"
        # mesh_file_path = "meshes/cook_quadrangles_1.msh"
        # mesh_file_path = "meshes/cook_quadrangles_0.msh"
        # mesh_file_path = "meshes/cook_20_quadrangles_structured.msh"
        # mesh_file_path = "meshes/cook_01_quadrangles_structured.msh"
        # mesh_file_path = "meshes/cook_10_triangles_structured.msh"
        mesh_file_path = "meshes/cook_16_triangles_structured.msh"

        # --- FIELD
        displacement = Field(
            label="U",
            field_type=FieldType.DISPLACEMENT_LARGE_STRAIN_PLANE_STRAIN)

        # --- FINITE ELEMENT
        finite_element = FiniteElement(
            element_type=ElementType.HDG_EQUAL,
            polynomial_order=1,
            euclidean_dimension=displacement.euclidean_dimension,
            basis_type=BasisType.MONOMIAL,
        )

        # --- PROBLEM
        p = Problem(mesh_file_path=mesh_file_path,
                    field=displacement,
                    finite_element=finite_element,
                    time_steps=time_steps,
                    iterations=iterations,
                    boundary_conditions=boundary_conditions,
                    loads=loads,
                    quadrature_type=QuadratureType.GAUSS,
                    tolerance=1.0e-6,
                    res_folder_path=get_current_res_folder_path())

        # --- MATERIAL
        parameters = {
            "YoungModulus": 206.e9,
            "PoissonRatio": 0.29,
            "HardeningSlope": 10.0e9,
            "YieldStress": 300.0e6
        }
        # stabilization_parameter = 1000. * parameters["YoungModulus"] / (1.0 + parameters["PoissonRatio"])
        stabilization_parameter = 0.00005 * parameters["YoungModulus"] / (
            1.0 + parameters["PoissonRatio"])
        stabilization_parameter = 0.001 * parameters["YoungModulus"] / (
            1.0 + parameters["PoissonRatio"])
        # stabilization_parameter = 0.0000 * parameters["YoungModulus"] / (1.0 + parameters["PoissonRatio"])
        # stabilization_parameter = 1.0 * parameters["YoungModulus"] / (1.0 + parameters["PoissonRatio"])
        mat = Material(
            nq=p.mesh.number_of_cell_quadrature_points_in_mesh,
            library_path="behaviour/src/libBehaviour.so",
            library_name="Voce",
            hypothesis=mgis_bv.Hypothesis.PLANESTRAIN,
            stabilization_parameter=stabilization_parameter,
            lagrange_parameter=parameters["YoungModulus"],
            field=displacement,
            parameters=None,
        )

        # --- SOLVE
        solve_newton_2(p, mat, verbose=False, debug_mode=DebugMode.NONE)
        # solve_newton_exact(p, mat, verbose=False, debug_mode=DebugMode.NONE)

        from pp.plot_ssna import plot_det_f

        # plot_det_f(46, "res")

        res_folder = "res"
        # res_folder = "/home/dsiedel/projetcs/h2o/tests/test_mechanics/test_cook_finite_strain_isotropic_voce_hardening/res_cook_20_ord1_quad/res"
        from os import walk, path
        import matplotlib.pyplot as plt
        from matplotlib.colors import LinearSegmentedColormap

        def __plot(column: int, time_step_index: int):

            _, _, filenames = next(walk(res_folder))
            # for time_step_index in range(1, len(time_steps)):
            # for time_step_index in range(30, len(time_steps)):
            for filename in filenames:
                if "{}".format(time_step_index).zfill(
                        6) in filename and "qdp" in filename:
                    hho_file_path = path.join(res_folder, filename)
                    with open(hho_file_path, "r") as hho_res_file:
                        fig, ax0d = plt.subplots(nrows=1, ncols=1)
                        c_hho = hho_res_file.readlines()
                        field_label = c_hho[0].split(",")[column]
                        number_of_points = len(c_hho) - 1
                        # for _iloc in range(len(c_hho)):
                        #     line = c_hho[_iloc]
                        #     x_coordinates = float(line.split(",")[0])
                        #     y_coordinates = float(line.split(",")[1])
                        #     if (x_coordinates - 0.0) ** 2 + (y_coordinates)
                        eucli_d = displacement.euclidean_dimension
                        points = np.zeros((eucli_d, number_of_points),
                                          dtype=real)
                        field_vals = np.zeros((number_of_points, ), dtype=real)
                        field_min_val = np.inf
                        field_max_val = -np.inf
                        for l_count, line in enumerate(c_hho[1:]):
                            x_coordinates = float(line.split(",")[0])
                            y_coordinates = float(line.split(",")[1])
                            field_value = float(line.split(",")[column])
                            points[0, l_count] += x_coordinates
                            points[1, l_count] += y_coordinates
                            field_vals[l_count] += field_value
                            # if field_vals[l_count]
                        x, y = points
                        colors = [(0, 0, 1), (0, 1, 1), (0, 1, 0), (1, 1, 0),
                                  (1, 0, 0)]
                        # perso = LinearSegmentedColormap.from_list("perso", colors, N=1000)
                        perso = LinearSegmentedColormap.from_list("perso",
                                                                  colors,
                                                                  N=20)
                        vmin = min(field_vals[:])
                        vmax = max(field_vals[:])
                        # vmin = 300.e6
                        # vmax = 400.e6
                        # vmin = 8.e8/3.
                        # vmax = 12.e8/3.
                        # levels = np.linspace(vmin, vmax, 50, endpoint=True)
                        levels = np.linspace(vmin, vmax, 20, endpoint=True)
                        ticks = np.linspace(vmin, vmax, 10, endpoint=True)
                        datad = ax0d.tricontourf(x,
                                                 y,
                                                 field_vals[:],
                                                 cmap=perso,
                                                 levels=levels)
                        ax0d.get_xaxis().set_visible(False)
                        ax0d.get_yaxis().set_visible(False)
                        ax0d.set_xlabel("map of the domain $\Omega$")
                        cbar = fig.colorbar(datad, ax=ax0d, ticks=ticks)
                        cbar.set_label("{} : {}".format(
                            field_label, time_step_index),
                                       rotation=270,
                                       labelpad=15.0)
                        # plt.savefig("/home/dsiedel/Projects/pythhon/plots/{}.png".format(time_step))
                        plt.show()

        for tsindex in [1, 50, 100, 192]:
            # __plot(15, tsindex)
            pass
        # __plot(15, 19)
        __plot(15, 34)