Ejemplo n.º 1
0
def test_train_simple_model(model_name, module_workspace, workspace,
                            tiny_feats_csv):
    thisconfig = copy.deepcopy(config)
    thisconfig.data['training']['iteration_write_frequency'] = 2
    thisconfig.data['training']['max_iterations'] = 10
    thisconfig.data['training']['batch_size'] = 12
    thisconfig.data['training']['max_files_per_class'] = 1
    thisconfig.data['paths']['model_dir'] = workspace
    thisconfig.data['paths']['feature_dir'] = module_workspace
    # The features get loaded by tiny_feats_csv anyway
    thisconfig.data['features']['cqt']['skip_existing'] = True
    experiment_name = "testexperiment"
    hold_out = "rwc"

    driver = hcnn.driver.Driver(thisconfig,
                                model_name=model_name,
                                experiment_name=experiment_name,
                                dataset=tiny_feats_csv, load_features=True)

    driver.setup_partitions(hold_out)
    result = driver.train_model()
    assert result is True

    # Expected files this should generate
    new_config = os.path.join(workspace, experiment_name, "config.yaml")
    train_loss_fp = os.path.join(workspace, experiment_name, hold_out,
                                 "training_loss.pkl")
    assert os.path.exists(new_config)
    assert os.path.exists(train_loss_fp)
Ejemplo n.º 2
0
def train(config,
          experiment_name,
          test_set,
          model_name):
    """Run training loop.

    Parameters
    ----------
    config : str
        Full path

    experiment_name : str
        Name of the experiment. Files are saved in a folder of this name.

    test_set : str
        String in ["rwc", "uiowa", "philharmonia"] specifying which
        dataset to use as the test set.

    model_name : str
        Name of the model to use for training.
    """
    print(utils.colored("Training experiment: {}".format(experiment_name)))
    logger.info("Training model '{}' with test_set '{}'"
                .format(model_name, test_set))
    driver = hcnn.driver.Driver(config, test_set,
                                model_name=model_name,
                                experiment_name=experiment_name,
                                load_features=True)

    return driver.train_model()
Ejemplo n.º 3
0
def test_find_best_model(config_with_workspace, model_name, workspace):
    experiment_name = "testexperiment"
    hold_out = "rwc"
    driver = hcnn.driver.Driver(config_with_workspace, model_name=model_name,
                                experiment_name=experiment_name,
                                load_features=True)
    driver.setup_partitions(hold_out)
    result = driver.train_model()
    assert result is True

    # Create a vastly reduced validation dataframe so it'll take less long.
    validation_size = 3
    driver.valid_set.df = driver.valid_set.df.sample(n=validation_size,
                                                     replace=True)
    assert len(driver.valid_set.df) == validation_size
    driver.test_set.df = driver.test_set.df.sample(n=validation_size,
                                                   replace=True)

    results_df = driver.find_best_model()
    # check that the results_df is ordered by iteration.
    assert all(results_df["model_iteration"] ==
               sorted(results_df["model_iteration"]))

    # Get the best param
    param_iter = driver.select_best_iteration(results_df)
    assert param_iter is not None

    # load it again to test the reloading thing.
    #  Just making sure this runs through
    results_df2 = driver.find_best_model()
    assert all(results_df == results_df2)

    # Shrink the dataset so this doesn't take forever.
    driver.dataset.df = driver.dataset.df.sample(n=10, replace=True)
    predictions_df = driver.predict(param_iter)
    assert not predictions_df.empty
    predictions_df_path = os.path.join(
        workspace, experiment_name, hold_out,
        "model_{}_predictions.pkl".format(param_iter))
    assert os.path.exists(predictions_df_path)