Ejemplo n.º 1
0
                lon = coords[1]
                bl,x,y = bil.bilinear(lat, lon, df)
                wind = bl['t_interp']
                wind_hourly = wind.rename('wind_speed')
                wind_locations[key] = wind_hourly

        else:
        # ERA5 weather
            print('Using weather data from ERA5')
            parameters = {
                'wind_u': 'u10',
                'wind_v': 'v10'
            }

            download.weather_era5(input_path, year, 1, 'I', 'wind',  ['10m_u_component_of_wind', '10m_v_component_of_wind'], [ 60, -8, 50, 2, ])
            df_u = read.weather_era5(input_path, year, 1, 'I', 'wind','u10')
            df_v = read.weather_era5(input_path, year, 1, 'I', 'wind','v10')
            print(df_v)
            # for each location ...
            for key, generator in generators.items():
                # blinearly interpolate wind from weather grid
                coords = generator['coords']
                lat = coords[0]
                lon = coords[1]
                bl_u,x,y = bil.bilinear(lat, lon, df_u)
                bl_v,x,y = bil.bilinear(lat, lon, df_v)
                wind_u = bl_u['t_interp']
                wind_v = bl_v['t_interp']
                wind_squared = wind_u.pow(2) + wind_u.pow(2)
                wind_hourly = wind_squared.pow(1/2).rename('wind_speed')
                wind_locations[key] = wind_hourly
Ejemplo n.º 2
0
# read weather
parameters = {
    'air_temp': 't2m',
    'soil_temp': 'stl4',
    'wind_u': 'u10',
    'wind_v': 'v10',
    'pressure': 'sp',
    'cloud': 'tcc',
    'precipitation': 'ilspf',
    'rain': 'lsrr',
    #           'precipitation_type': 'ptype',
    'irradiance': 'ssrd',
    'irradiance_cs': 'ssrdc'
}
weather = pd.concat([
    read.weather_era5(output_path, year, hour, grid, 'weather', parameter)
    for parameter in parameters.values()
],
                    keys=parameters.keys(),
                    names=['parameter', 'latitude', 'longitude'],
                    axis=1)
print(weather)
weather.to_pickle("/home/malcolm/uclan/output/correlation/weather/test.pickle")

# map population to the weather grid

population_filename = os.path.join(output_path, "population")
if os.path.isfile(population_filename):
    s = pd.read_pickle(population_filename)
    print("mapped population read from file")
else:
Ejemplo n.º 3
0
# read ERA5
input_path = "/home/malcolm/uclan/input/"
interim_path = "/home/malcolm/uclan/interim/"
year = '2018'

download.weather_era5(input_path, year, 1, 'I', 'pv', [
    'surface_solar_radiation_downwards',
    'surface_solar_radiation_downward_clear_sky'
], [
    60,
    -8,
    50,
    2,
])
df_ir = read.weather_era5(input_path, year, 1, 'I', 'pv', 'ssrd')
df_ir, x, y = bil.bilinear(lat, lon, df_ir)
era5_ir = df_ir['t_interp']
df_cs = read.weather_era5(input_path, year, 1, 'I', 'pv', 'ssrdc')
df_cs, x, y = bil.bilinear(lat, lon, df_cs)
era5_cs = df_cs['t_interp']
# convert from J/m2 to wh/m2
era5_ir = era5_ir * 0.000277778
era5_cs = era5_cs * 0.000277778
# print(era5_ir)
# print(era5_cs)

# read midas
midas_file = "/home/malcolm/uclan/data/midas/midas-open_uk-radiation-obs_dv-201908_cornwall_01395_camborne_qcv-1_2018.csv"
pv_hourly = read_midas_irradiance(
    midas_file, ['glbl_irad_amt', 'difu_irad_amt', 'direct_irad'])