Ejemplo n.º 1
0
    def test_eye(self):
        def get_offset(tensor_array):
            x, y = tensor_array.shape
            for k in range(x):
                for l in range(y):
                    if tensor_array[k][l] == 1:
                        return k, l
            return x, y

        shape = 5
        eye = ht.eye(shape, dtype=ht.uint8, split=1, device=ht_device)
        self.assertIsInstance(eye, ht.DNDarray)
        self.assertEqual(eye.dtype, ht.uint8)
        self.assertEqual(eye.shape, (shape, shape))
        self.assertEqual(eye.split, 1)

        offset_x, offset_y = get_offset(eye._DNDarray__array)
        self.assertGreaterEqual(offset_x, 0)
        self.assertGreaterEqual(offset_y, 0)
        x, y = eye._DNDarray__array.shape
        for i in range(x):
            for j in range(y):
                expected = 1 if i - offset_x is j - offset_y else 0
                self.assertEqual(eye._DNDarray__array[i][j], expected)

        shape = (10, 20)
        eye = ht.eye(shape, dtype=ht.float32, device=ht_device)
        self.assertIsInstance(eye, ht.DNDarray)
        self.assertEqual(eye.dtype, ht.float32)
        self.assertEqual(eye.shape, shape)
        self.assertEqual(eye.split, None)

        offset_x, offset_y = get_offset(eye._DNDarray__array)
        self.assertGreaterEqual(offset_x, 0)
        self.assertGreaterEqual(offset_y, 0)
        x, y = eye._DNDarray__array.shape
        for i in range(x):
            for j in range(y):
                expected = 1.0 if i - offset_x is j - offset_y else 0.0
                self.assertEqual(eye._DNDarray__array[i][j], expected)

        shape = (10,)
        eye = ht.eye(shape, dtype=ht.int32, split=0, device=ht_device)
        self.assertIsInstance(eye, ht.DNDarray)
        self.assertEqual(eye.dtype, ht.int32)
        self.assertEqual(eye.shape, shape * 2)
        self.assertEqual(eye.split, 0)

        offset_x, offset_y = get_offset(eye._DNDarray__array)
        self.assertGreaterEqual(offset_x, 0)
        self.assertGreaterEqual(offset_y, 0)
        x, y = eye._DNDarray__array.shape
        for i in range(x):
            for j in range(y):
                expected = 1 if i - offset_x is j - offset_y else 0
                self.assertEqual(eye._DNDarray__array[i][j], expected)
Ejemplo n.º 2
0
 def test_qr_sp1_ext(self):
     st_whole = torch.randn(70, 70, device=self.device.torch_device)
     sp = 1
     for m in range(50, st_whole.shape[0] + 1, 1):
         for n in range(50, st_whole.shape[1] + 1, 1):
             for t in range(1, 3):
                 st = st_whole[:m, :n].clone()
                 a_comp = ht.array(st, split=0)
                 a = ht.array(st, split=sp)
                 qr = a.qr(tiles_per_proc=t)
                 self.assertTrue(ht.allclose(a_comp, qr.Q @ qr.R, rtol=1e-5, atol=1e-5))
                 self.assertTrue(ht.allclose(qr.Q.T @ qr.Q, ht.eye(m), rtol=1e-5, atol=1e-5))
                 self.assertTrue(ht.allclose(ht.eye(m), qr.Q @ qr.Q.T, rtol=1e-5, atol=1e-5))
Ejemplo n.º 3
0
    def test_fill_diagonal(self):
        ref = ht.zeros((ht.MPI_WORLD.size * 2, ht.MPI_WORLD.size * 2),
                       dtype=ht.float32,
                       split=0)
        a = ht.eye(ht.MPI_WORLD.size * 2, dtype=ht.float32, split=0)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        ref = ht.zeros((ht.MPI_WORLD.size * 2, ht.MPI_WORLD.size * 2),
                       dtype=ht.int32,
                       split=0)
        a = ht.eye(ht.MPI_WORLD.size * 2, dtype=ht.int32, split=0)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        ref = ht.zeros((ht.MPI_WORLD.size * 2, ht.MPI_WORLD.size * 2),
                       dtype=ht.float32,
                       split=1)
        a = ht.eye(ht.MPI_WORLD.size * 2, dtype=ht.float32, split=1)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        ref = ht.zeros((ht.MPI_WORLD.size * 2, ht.MPI_WORLD.size * 3),
                       dtype=ht.float32,
                       split=0)
        a = ht.eye((ht.MPI_WORLD.size * 2, ht.MPI_WORLD.size * 3),
                   dtype=ht.float32,
                   split=0)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        # ToDo: uneven tensor dimensions x and y when bug in factories.eye is fixed
        ref = ht.zeros((ht.MPI_WORLD.size * 3, ht.MPI_WORLD.size * 3),
                       dtype=ht.float32,
                       split=1)
        a = ht.eye((ht.MPI_WORLD.size * 3, ht.MPI_WORLD.size * 3),
                   dtype=ht.float32,
                   split=1)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        # ToDo: uneven tensor dimensions x and y when bug in factories.eye is fixed
        ref = ht.zeros((ht.MPI_WORLD.size * 4, ht.MPI_WORLD.size * 4),
                       dtype=ht.float32,
                       split=0)
        a = ht.eye((ht.MPI_WORLD.size * 4, ht.MPI_WORLD.size * 4),
                   dtype=ht.float32,
                   split=0)
        a.fill_diagonal(0)
        self.assertTrue(ht.equal(a, ref))

        a = ht.ones((ht.MPI_WORLD.size * 2, ), dtype=ht.float32, split=0)
        with self.assertRaises(ValueError):
            a.fill_diagonal(0)
Ejemplo n.º 4
0
    def test_qr(self):
        m, n = 20, 40
        st = torch.randn(m,
                         n,
                         device=self.device.torch_device,
                         dtype=torch.float)
        a_comp = ht.array(st, split=0)
        for t in range(1, 3):
            for sp in range(2):
                a = ht.array(st, split=sp, dtype=torch.float)
                qr = a.qr(tiles_per_proc=t)
                self.assertTrue(
                    ht.allclose((a_comp - (qr.Q @ qr.R)),
                                0,
                                rtol=1e-5,
                                atol=1e-5))
                self.assertTrue(
                    ht.allclose(qr.Q.T @ qr.Q, ht.eye(m), rtol=1e-5,
                                atol=1e-5))
                self.assertTrue(
                    ht.allclose(ht.eye(m), qr.Q @ qr.Q.T, rtol=1e-5,
                                atol=1e-5))
        m, n = 40, 40
        st1 = torch.randn(m, n, device=self.device.torch_device)
        a_comp1 = ht.array(st1, split=0)
        for t in range(1, 3):
            for sp in range(2):
                a1 = ht.array(st1, split=sp)
                qr1 = a1.qr(tiles_per_proc=t)
                self.assertTrue(
                    ht.allclose((a_comp1 - (qr1.Q @ qr1.R)),
                                0,
                                rtol=1e-5,
                                atol=1e-5))
                self.assertTrue(
                    ht.allclose(qr1.Q.T @ qr1.Q,
                                ht.eye(m),
                                rtol=1e-5,
                                atol=1e-5))
                self.assertTrue(
                    ht.allclose(ht.eye(m),
                                qr1.Q @ qr1.Q.T,
                                rtol=1e-5,
                                atol=1e-5))
        m, n = 40, 20
        st2 = torch.randn(m,
                          n,
                          dtype=torch.double,
                          device=self.device.torch_device)
        a_comp2 = ht.array(st2, split=0, dtype=ht.double)
        for t in range(1, 3):
            for sp in range(2):
                a2 = ht.array(st2, split=sp)
                qr2 = a2.qr(tiles_per_proc=t)
                self.assertTrue(
                    ht.allclose(a_comp2, qr2.Q @ qr2.R, rtol=1e-5, atol=1e-5))
                self.assertTrue(
                    ht.allclose(qr2.Q.T @ qr2.Q,
                                ht.eye(m, dtype=ht.double),
                                rtol=1e-5,
                                atol=1e-5))
                self.assertTrue(
                    ht.allclose(ht.eye(m, dtype=ht.double),
                                qr2.Q @ qr2.Q.T,
                                rtol=1e-5,
                                atol=1e-5))
                # test if calc R alone works
                qr = ht.qr(a2, calc_q=False, overwrite_a=True)
                self.assertTrue(qr.Q is None)

        m, n = 40, 20
        st = torch.randn(m, n, device=self.device.torch_device)
        a_comp = ht.array(st, split=None)
        a = ht.array(st, split=None)
        qr = a.qr()
        self.assertTrue(ht.allclose(a_comp, qr.Q @ qr.R, rtol=1e-5, atol=1e-5))
        self.assertTrue(
            ht.allclose(qr.Q.T @ qr.Q, ht.eye(m), rtol=1e-5, atol=1e-5))
        self.assertTrue(
            ht.allclose(ht.eye(m), qr.Q @ qr.Q.T, rtol=1e-5, atol=1e-5))

        # raises
        with self.assertRaises(TypeError):
            ht.qr(np.zeros((10, 10)))
        with self.assertRaises(TypeError):
            ht.qr(a_comp, tiles_per_proc="ls")
        with self.assertRaises(TypeError):
            ht.qr(a_comp, tiles_per_proc=1, calc_q=30)
        with self.assertRaises(TypeError):
            ht.qr(a_comp, tiles_per_proc=1, overwrite_a=30)
        with self.assertRaises(ValueError):
            ht.qr(a_comp, tiles_per_proc=torch.tensor([1, 2, 3]))
        with self.assertRaises(ValueError):
            ht.qr(ht.zeros((3, 4, 5)))