Ejemplo n.º 1
0
    def create_spherical_dataset(self,
                                 num_samples_cluster,
                                 radius=1.0,
                                 offset=4.0,
                                 dtype=ht.float32,
                                 random_state=1):
        """
        Creates k=4 sperical clusters in 3D space along the space-diagonal

        Parameters
        ----------
        num_samples_cluster: int
            Number of samples per cluster. Each process will create n // MPI_WORLD.size elements for each cluster
        radius: float
            Radius of the sphere
        offset: float
            Shift of the clusters along the axes. The 4 clusters will be positioned centered around c1=(offset, offset,offset),
            c2=(2*offset,2*offset,2*offset), c3=(-offset, -offset, -offset) and c4=(2*offset, -2*offset, -2*offset)
        dtype: ht.datatype
        random_state: int
            seed of the torch random number generator
        """
        # contains num_samples

        p = ht.MPI_WORLD.size
        # create k sperical clusters with each n elements per cluster. Each process creates k * n/p elements
        num_ele = num_samples_cluster // p
        ht.random.seed(random_state)
        # radius between 0 and 1
        r = ht.random.rand(num_ele, split=0) * radius
        # theta between 0 and pi
        theta = ht.random.rand(num_ele, split=0) * 3.1415
        # phi between 0 and 2pi
        phi = ht.random.rand(num_ele, split=0) * 2 * 3.1415
        # Cartesian coordinates
        x = r * ht.sin(theta) * ht.cos(phi)
        x.astype(dtype, copy=False)
        y = r * ht.sin(theta) * ht.sin(phi)
        y.astype(dtype, copy=False)
        z = r * ht.cos(theta)
        z.astype(dtype, copy=False)

        cluster1 = ht.stack((x + offset, y + offset, z + offset), axis=1)
        cluster2 = ht.stack((x + 2 * offset, y + 2 * offset, z + 2 * offset),
                            axis=1)
        cluster3 = ht.stack((x - offset, y - offset, z - offset), axis=1)
        cluster4 = ht.stack((x - 2 * offset, y - 2 * offset, z - 2 * offset),
                            axis=1)

        data = ht.concatenate((cluster1, cluster2, cluster3, cluster4), axis=0)
        # Note: enhance when shuffle is available
        return data
Ejemplo n.º 2
0
    def test_sin(self):
        # base elements
        elements = 30
        comparison = torch.arange(elements, dtype=torch.float64).sin()

        # sine of float32
        float32_tensor = ht.arange(elements, dtype=ht.float32)
        float32_sin = ht.sin(float32_tensor)
        self.assertIsInstance(float32_sin, ht.tensor)
        self.assertEqual(float32_sin.dtype, ht.float32)
        self.assertEqual(float32_sin.dtype, ht.float32)
        self.assertTrue(
            torch.allclose(float32_sin._tensor__array.type(torch.double),
                           comparison))

        # sine of float64
        float64_tensor = ht.arange(elements, dtype=ht.float64)
        float64_sin = ht.sin(float64_tensor)
        self.assertIsInstance(float64_sin, ht.tensor)
        self.assertEqual(float64_sin.dtype, ht.float64)
        self.assertEqual(float64_sin.dtype, ht.float64)
        self.assertTrue(
            torch.allclose(float64_sin._tensor__array.type(torch.double),
                           comparison))

        # sine of ints, automatic conversion to intermediate floats
        int32_tensor = ht.arange(elements, dtype=ht.int32)
        int32_sin = ht.sin(int32_tensor)
        self.assertIsInstance(int32_sin, ht.tensor)
        self.assertEqual(int32_sin.dtype, ht.float64)
        self.assertEqual(int32_sin.dtype, ht.float64)
        self.assertTrue(
            torch.allclose(int32_sin._tensor__array.type(torch.double),
                           comparison))

        # sine of longs, automatic conversion to intermediate floats
        int64_tensor = ht.arange(elements, dtype=ht.int64)
        int64_sin = ht.sin(int64_tensor)
        self.assertIsInstance(int64_sin, ht.tensor)
        self.assertEqual(int64_sin.dtype, ht.float64)
        self.assertEqual(int64_sin.dtype, ht.float64)
        self.assertTrue(
            torch.allclose(int64_sin._tensor__array.type(torch.double),
                           comparison))

        # check exceptions
        with self.assertRaises(TypeError):
            ht.sin([1, 2, 3])
        with self.assertRaises(TypeError):
            ht.sin('hello world')