Ejemplo n.º 1
0
def test_run():
    wf_names = [
        'Montage_25', 'CyberShake_30', 'Inspiral_30', 'Sipht_30',
        'Epigenomics_24'
    ]

    BASE_PARAMS["ga_params"]["population"] = 5
    BASE_PARAMS["ga_params"]["Kbest"] = 1
    BASE_PARAMS["ga_params"]["generations"] = 10

    seq = make_linear_sequence(
        BASE_PARAMS, {
            "transfer_time": [0, 10, 50, 100, 300, 500, 2000],
            "ideal_flops": [1, 20, 50, 100, 500]
        })

    to_run = [
        partial(do_exp, wf_name, **params) for wf_name in wf_names
        for params in seq
    ]
    results = [t() for t in to_run for _ in range(3)]
    saver = UniqueNameSaver(TEMP_PATH, EXPERIMENT_NAME)
    for result in results:
        saver(result)
    pass
Ejemplo n.º 2
0
def inherited_pop_run(exp,
                      wf_tasksids_mapping,
                      repeat_count,
                      base_params,
                      is_debug=False):

    path = os.path.join(TEMP_PATH, "igaheft_series")
    saver = UniqueNameSaver(path, base_params["experiment_name"])

    to_run = []
    for wf_name, ids in wf_tasksids_mapping.items():
        for id in ids:
            params = deepcopy(base_params)
            params["executor_params"]["task_id_to_fail"] = id
            func = partial(exp, saver=saver, wf_name=wf_name, **params)
            to_run.append(func)

    to_run = randomize_order(to_run)

    if is_debug:
        results = [t() for t in to_run for _ in range(repeat_count)]
    else:
        results = multi_repeat(repeat_count, to_run)

    # path = save_path if save_path is not None else os.path.join(TEMP_PATH, "igaheft_series")
    # saver = UniqueNameSaver(path, base_params["experiment_name"])
    # for result in results:
    #     saver(result)
    pass
Ejemplo n.º 3
0
def do_exp():
    result, logbook = run_dcga(_wf, estimator, rm, heft_mapping, heft_ordering, **params)
    saver = UniqueNameSaver("{0}/temp/dcga_exp".format(__root_path__))
    data = {
        "final_makespan": result,
        "iterations": logbook
    }
    saver(data)
    return result
Ejemplo n.º 4
0
def coeff_run():
    """
    coefficient of compute/data intensivity
    """

    # wf_names = ['Montage_25', 'CyberShake_30', 'Inspiral_30', 'Sipht_30', 'Epigenomics_24']
    #all_coeffs = [1/100, 1/50, 1/10, 1/5, 1/2.766, 15, 20, 25, 30, 35, 40, 45, 75]
    all_coeffs = [1 / 100, 1 / 50, 1 / 10, 1 / 5, 1 / 2.766, 1, 2.766] + list(
        range(5, 101, 5))

    # wf_names = [('Montage_25', [10]),
    #             ('CyberShake_30', [0.1] + list(range(10, 46, 1))),
    #             ('Inspiral_30', [10, 1, 1/2.766]),
    #             ('Sipht_30', [0.02] + list(range(30, 50, 1)) + list(range(50, 101, 5))),
    #             ('Epigenomics_24', list(range(5, 46, 1)) + list(range(45, 101, 5)))]

    # wf_names = [('Montage_25', [2.766])]

    wf_names = [  #('Montage_25', [10]),
        ('CyberShake_30', all_coeffs),
        #('Inspiral_30', [10, 1, 1/2.766]),
        #('Sipht_30', [0.02] + list(range(30, 50, 1)) + list(range(50, 101, 5))),
        ('Epigenomics_24', all_coeffs)
    ]

    def transfer_time(max_runtime, c):
        transfer = max_runtime * BASE_PARAMS["ideal_flops"] / c
        return transfer

    to_run = []
    for wf_name, coeffs in wf_names:
        _wf = wf(wf_name)
        max_runtime = max(_wf.get_all_unique_tasks(),
                          key=lambda x: x.runtime).runtime
        param_sets = [
            copy_and_set(BASE_PARAMS,
                         transfer_time=transfer_time(max_runtime, c),
                         data_intensive_coeff=c) for c in coeffs
        ]
        exps = [partial(do_exp, wf_name, **params) for params in param_sets]
        to_run = to_run + exps

    # m_repeat = lambda n, funcs: [f() for f in funcs for _ in range(n)]
    #results = m_repeat(REPEAT_COUNT, to_run)
    results = multi_repeat(REPEAT_COUNT, to_run)
    saver = UniqueNameSaver(TEMP_PATH, EXPERIMENT_NAME)
    for result in results:
        saver(result)

    # coeff_aggregate(saver.directory, "coeff.png")
    pass
Ejemplo n.º 5
0
def changing_reliability_run(exp,
                             reliability,
                             individuals_counts,
                             repeat_count,
                             wf_names,
                             base_params,
                             is_debug=False):

    path = os.path.join(TEMP_PATH, "gaheft_series")
    saver = UniqueNameSaver(path, base_params["experiment_name"])

    configs = []
    for r in reliability:
        for ind_count in individuals_counts:
            params = deepcopy(base_params)
            params["estimator_settings"]["reliability"] = r
            params["alg_params"]["n"] = ind_count
            params["alg_params"]["migrCount"] = int(0.1 * ind_count)
            configs.append(params)

    to_run = [
        partial(exp, saver=saver, wf_name=wf_name, **params)
        for wf_name in wf_names for params in configs
    ]
    to_run = randomize_order(to_run)

    # i = 0
    # results = []
    # for _ in range(repeat_count):
    #     for t in to_run:
    #         print("//////////////////////RUN NUMBER {0}=================".format(i))
    #         i += 1
    #         results.append(t())

    if is_debug:
        results = [t() for t in to_run for _ in range(repeat_count)]
    else:
        results = multi_repeat(repeat_count, to_run)

    # path = save_path if save_path is not None else os.path.join(TEMP_PATH, "gaheft_series")
    # saver = UniqueNameSaver(path, base_params["experiment_name"])
    # for result in results:
    #     saver(result)
    pass
Ejemplo n.º 6
0
def real_run():
    wf_names = [
        'Montage_25', 'CyberShake_30', 'Inspiral_30', 'Sipht_30',
        'Epigenomics_24'
    ]
    seq = make_linear_sequence(
        BASE_PARAMS, {
            "transfer_time": [0, 10, 50, 100, 300, 500, 2000],
            "ideal_flops": [1, 20, 50, 100, 500]
        })

    to_run = [
        partial(do_exp, wf_name, **params) for wf_name in wf_names
        for params in seq
    ]
    results = multi_repeat(REPEAT_COUNT, to_run)
    saver = UniqueNameSaver(TEMP_PATH, EXPERIMENT_NAME)
    for result in results:
        saver(result)
    pass
Ejemplo n.º 7
0
def test_run(exp, base_params):
    configs = []
    # reliability = [1.0, 0.95, 0.9]
    # reliability = [1.0]
    reliability = [0.95]
    wf_name = "Montage_25"

    for r in reliability:
        params = deepcopy(base_params)
        params["estimator_settings"]["reliability"] = r
        configs.append(params)

    to_run = [partial(exp, wf_name=wf_name, **params) for params in configs]
    results = [t() for t in to_run]
    # results = multi_repeat(REPEAT_COUNT, to_run)

    saver = UniqueNameSaver(os.path.join(TEMP_PATH, "gaheft_series"),
                            base_params["experiment_name"])
    for result in results:
        saver(result)
    pass
Ejemplo n.º 8
0
def do_exp_schedule(takeHeftSchedule=True):
    saver = UniqueNameSaver("../../temp/ga_vs_heft_exp_heft_schedule")

    ga_makespan, heft_makespan, ga_schedule, heft_schedule = run(wf_names[0])

    ## TODO: pure hack

    schedule = heft_schedule if takeHeftSchedule else ga_schedule

    mapping = [(item.job.id, node.flops)
               for node, items in schedule.mapping.items() for item in items]
    mapping = sorted(mapping, key=lambda x: x[0])

    ordering = [(item.job.id, item.start_time)
                for node, items in heft_schedule.mapping.items()
                for item in items]
    ordering = [t for t, time in sorted(ordering, key=lambda x: x[1])]

    data = {"mapping": mapping, "ordering": ordering}

    name = saver(data)
    return ga_makespan, heft_makespan, ga_schedule, heft_schedule, name
Ejemplo n.º 9
0
def do_exp(arg):
    config, name = tasks[arg]
    saver = UniqueNameSaver(os.path.join(base_path, name))
    return do_experiment(saver, config, _wf, rm, estimator)
Ejemplo n.º 10
0
            "ideal_inds": {
                MAPPING_SPECIE: ms_str_repr,
                ORDERING_SPECIE: os_ideal_ind
            },
            "wf_name": _wf.name
        },
        "initial_pops": initial_pops,
        "final_solution": solution,
        "final_makespan": m,
        "iterations": logbook
    }
    saver(data)
    return m


saver = UniqueNameSaver(os.path.join(__root_path__, "temp/cga_exp"))


def do_exp():
    ## TODO: remove time measure
    tstart = datetime.now()
    res = do_experiment(saver, config, _wf, rm, estimator)
    tend = datetime.now()
    tres = tend - tstart
    print("Time Result: " + str(tres.total_seconds()))
    return res


if __name__ == "__main__":

    res = repeat(do_exp, 1)
Ejemplo n.º 11
0
        "best_components_itself":
        best_components_itself(sols),
        "best":
        -1 * Utility.makespan(
            build_schedule(_wf, estimator, rm,
                           max(sols, key=lambda x: x.fitness)))
    },
    "operators": {
        # "choose": default_choose,
        "build_solutions": default_build_solutions,
        # "fitness": fitness_mapping_and_ordering,
        "fitness": overhead_fitness_mapping_and_ordering,
        # "assign_credits": default_assign_credits
        # "assign_credits": max_assign_credits
        "assign_credits": assign_from_transfer_overhead
    }
}

saver = UniqueNameSaver("../../temp/cga_heft_mixin")


def do_exp():
    return do_experiment(saver, config, _wf, rm, estimator)


if __name__ == "__main__":

    res = repeat(do_exp, 1)
    print("RESULTS: ")
    print(res)
Ejemplo n.º 12
0
    "ga_params": {
        "Kbest": 5,
        "population": 50,
        "crossover_probability": 0.3,  #0.8
        "replacing_mutation_probability": 0.1,  #0.5
        "sweep_mutation_probability": 0.3,  #0.4
        "generations": 100
    },
    "nodes_conf": [10, 15, 25, 30],
    "transfer_time": 100,
    "heft_initial": False
}

run = functools.partial(MixRunner(), **PARAMS)
directory = "../../temp/ga_vs_heft_exp"
saver = UniqueNameSaver("../../temp/ga_vs_heft_exp")

# def do_exp():
#     ga_makespan, heft_makespan, ga_schedule, heft_schedule = run(wf_names[0])
#     saver(ga_makespan)
#     return ga_makespan


def do_exp_schedule(takeHeftSchedule=True):
    saver = UniqueNameSaver("../../temp/ga_vs_heft_exp_heft_schedule")

    ga_makespan, heft_makespan, ga_schedule, heft_schedule = run(wf_names[0])

    ## TODO: pure hack

    schedule = heft_schedule if takeHeftSchedule else ga_schedule
Ejemplo n.º 13
0
            "assign_credits": max_assign_credits
        }
    }


def do_experiment(saver, config, _wf, rm, estimator):
    islands = [CoevolutionGA(**config), CoevolutionGA(**config),
               CoevolutionGA(**config), CoevolutionGA(**config)]
    # islands = [CoevolutionGA(**config), CoevolutionGA(**config)]
    migration = partial(equal_social_migration_scheme, k=3, selection=best_selection)
    best, islands = run_island_ga(islands, migration, 100, 20)
    return best.fitness



saver = UniqueNameSaver("{0}/temp/icga_exp".format(__root_path__))

def do_exp():
    res = do_experiment(saver, config, _wf, rm, estimator)
    return res

if __name__ == "__main__":
    res = repeat(do_exp, 1)
    print("RESULTS: ")
    print(res)





Ejemplo n.º 14
0
_wf = wf("Montage_100")
rm = ExperimentResourceManager(rg.r([10, 15, 25, 30]))
estimator = ExperimentEstimator(None, ideal_flops=20, transfer_time=100)

selector = ArchivedSelector(5)(tourn)

ms_ideal_ind = build_ms_ideal_ind(_wf, rm)
os_ideal_ind = build_os_ideal_ind(_wf)

os_representative = extract_ordering_from_ga_file(
    "{0}/temp/ga_schedule_full_439_tr100_m100.json".format(__root_path__))

heft_mapping = extract_mapping_from_ga_file(
    "{0}/temp/heft_etalon_full_tr100_m100.json".format(__root_path__), rm)

saver = UniqueNameSaver("../../temp/cga_fixed_ordering")


def do_exp():
    config = {
        "interact_individuals_count":
        100,
        "generations":
        300,
        "env":
        Env(_wf, rm, estimator),
        "species": [
            Specie(
                name=MAPPING_SPECIE,
                pop_size=50,
                cxb=0.9,
Ejemplo n.º 15
0
def do_exp():
    saver = UniqueNameSaver("{0}/temp/cga_init_pop_bad".format(__root_path__))
    return do_experiment(saver, cfg, _wf, rm, estimator)
Ejemplo n.º 16
0
 def __init__(self, dir_name, experiment_name):
     if os.path.isabs(dir_name):
         path = dir_name
     else:
         path = os.path.join(TEMP_PATH, dir_name)
     self._saver = UniqueNameSaver(path, experiment_name)
Ejemplo n.º 17
0
                ctx, pop, heft_ordering, 3),
            stat=lambda pop:
            {"hamming_distances": hamming_distances(pop, os_ideal_ind)})
    ],
    "solstat":
    lambda sols: {
        "best_components":
        hamming_for_best_components(sols, ms_ideal_ind, os_ideal_ind),
        "best_components_itself":
        best_components_itself(sols)
    },
    "operators": {
        # "choose": default_choose,
        "build_solutions": default_build_solutions,
        # "fitness": fitness_mapping_and_ordering,
        "fitness": overhead_fitness_mapping_and_ordering,
        "assign_credits": default_assign_credits
    }
}
saver = UniqueNameSaver("../../temp/cga_fixed_mapping")


def do_exp():
    return do_experiment(saver, config, _wf, rm, estimator)


if __name__ == "__main__":
    res = repeat(do_exp, 1)
    print("RESULTS: ")
    print(res)