Ejemplo n.º 1
0
def inpaint_bottom_conditional(h_upper, p_upper, ll_function, q_upper, x, mask,
                               oversample, ninner):
    nsamples = 1

    x = replicate_batch(x, oversample)
    mask = replicate_batch(mask, oversample)
    h_upper = replicate_batch(h_upper, oversample)

    x_, _ = p_upper.sample(h_upper)
    x = mask * x + (1 - mask) * x_

    log_p = p_upper.log_prob(x, h_upper)

    # Evaluate q(x)
    _, log_ql = ll_function(x, ninner)
    log_qu = q_upper.log_prob(h_upper, x)

    # Calculate weights
    log_w = (log_ql + log_qu - log_p) / 2
    w_norm = logsumexp(log_w, axis=0)
    log_w = log_w - w_norm
    w = tensor.exp(log_w)

    idx = subsample(w, nsamples)

    return x[idx, :]
Ejemplo n.º 2
0
def sample_bottom_conditional(h_upper, p_upper, ll_function, q_upper,
                              oversample, ninner):
    nsamples = 1
    """
    #h_upper = replicate_batch(h_upper, oversample)

    # First, get proposals
    x = p_upper.sample_expected(h_upper)

    return x
    """

    h_upper = replicate_batch(h_upper, oversample)
    x, log_p = p_upper.sample(h_upper)

    # Evaluate q(x) and q(h1|x)
    _, log_ql = ll_function(x, ninner)
    log_qu = q_upper.log_prob(h_upper, x)

    # Calculate weights
    log_w = (log_ql + log_qu - log_p) / 2
    w_norm = logsumexp(log_w, axis=0)
    log_w = log_w - w_norm
    w = tensor.exp(log_w)

    idx = subsample(w, nsamples)

    return x[idx, :]
Ejemplo n.º 3
0
def sample_top_conditional(h_lower, p_top, q_lower, oversample):
    nsamples = 1

    h_lower = replicate_batch(h_lower, oversample)

    # First, get proposals
    h1, log_1p = p_top.sample(oversample)
    log_1q = q_lower.log_prob(h1, h_lower)

    log_1ps = (log_1p + log_1q) / 2
    log_1 = logsumexp2(log_1p, log_1q)

    h2, log_2q = q_lower.sample(h_lower)
    log_2p = p_top.log_prob(h2)

    log_2ps = (log_2p + log_2q) / 2
    log_2 = logsumexp2(log_2p, log_2q)

    h_proposals = tensor.concatenate([h1, h2], axis=0)
    log_proposals = tensor.concatenate([log_1, log_2], axis=0)  # - np.log(2.)
    log_ps = tensor.concatenate([log_1ps, log_2ps], axis=0)

    # Calculate weights
    log_w = log_ps - log_proposals
    w_norm = logsumexp(log_w, axis=0)
    log_w = log_w - w_norm
    w = tensor.exp(log_w)

    idx = subsample(w, nsamples)

    return h_proposals[idx, :]
Ejemplo n.º 4
0
def sample_conditional(h_upper, h_lower, p_upper, p_lower, q_upper, q_lower,
                       oversample):
    """ return (h, log_ps) """
    nsamples = 1

    h_upper = replicate_batch(h_upper, oversample)
    h_lower = replicate_batch(h_lower, oversample)

    # First, get proposals
    h1, log_1pu = p_upper.sample(h_upper)
    log_1pl = p_lower.log_prob(h_lower, h1)
    log_1qu = q_upper.log_prob(h_upper, h1)
    log_1ql = q_lower.log_prob(h1, h_lower)

    log_1ps = (log_1pu + log_1pl + log_1ql + log_1qu) / 2
    log_1 = logsumexp2(log_1pu, log_1ql)

    h2, log_2ql = q_lower.sample(h_lower)
    log_2qu = q_upper.log_prob(h_upper, h2)
    log_2pl = p_lower.log_prob(h_lower, h2)
    log_2pu = p_upper.log_prob(h2, h_upper)

    log_2ps = (log_2pu + log_2pl + log_2ql + log_2qu) / 2
    log_2 = logsumexp2(log_2pu, log_2ql)

    h_proposals = tensor.concatenate([h1, h2], axis=0)
    log_proposals = tensor.concatenate([log_1, log_2], axis=0)  # - np.log(2.)
    log_ps = tensor.concatenate([log_1ps, log_2ps], axis=0)

    # Calculate weights
    log_w = log_ps - log_proposals
    w_norm = logsumexp(log_w, axis=0)
    log_w = log_w - w_norm
    w = tensor.exp(log_w)

    idx = subsample(w, nsamples)

    return h_proposals[idx, :]
Ejemplo n.º 5
0
    batch_size = x.shape[0]

    x_ = replicate_batch(x, n_samples)
    samples, log_p, log_q = brick.sample_q(x_)

    # Reshape and sum
    samples = unflatten_values(samples, batch_size, n_samples)
    log_p = unflatten_values(log_p, batch_size, n_samples)
    log_q = unflatten_values(log_q, batch_size, n_samples)

    # Importance weights for q proposal for p
    log_p_all = sum(log_p)  # This is the python sum over a list
    log_q_all = sum(log_q)  # This is the python sum over a list

    log_pq = (log_p_all - log_q_all)
    log_px = logsumexp(log_pq, axis=1) - tensor.log(n_samples)

    log_qp = (log_q_all - log_p_all)
    log_kl = tensor.sum(log_qp, axis=1) / n_samples

    total_kl = log_kl + log_px
    layer_kl = [
        tensor.sum(lq - lp, axis=1) / n_samples
        for lp, lq in zip(log_p[:], log_q[:])
    ]

    do_kl = theano.function([x, n_samples], [log_px, total_kl] + layer_kl,
                            name="do_kl",
                            allow_input_downcast=True)

    #----------------------------------------------------------------------
Ejemplo n.º 6
0
    x = tensor.matrix('features')

    x_ = replicate_batch(x, n_samples)
    samples, log_p, log_q = brick.sample_q(x_)

    # Reshape and sum
    samples = unflatten_values(samples, batch_size, n_samples)
    log_p = unflatten_values(log_p, batch_size, n_samples)
    log_q = unflatten_values(log_q, batch_size, n_samples)

    # Importance weights for q proposal for p
    log_p_all = sum(log_p)   # This is the python sum over a list
    log_q_all = sum(log_q)   # This is the python sum over a list

    log_pq = (log_p_all-log_q_all)-tensor.log(n_samples)
    w_norm = logsumexp(log_pq, axis=1)
    log_wp = log_pq-tensor.shape_padright(w_norm)
    wp = tensor.exp(log_wp)

    wp_ = tensor.mean(wp)
    wp2_ = tensor.mean(wp**2)

    ess_p = (wp_**2 / wp2_)

    # Importance weights for q proposal for p*
    wps = brick.importance_weights(log_p, log_q)

    wps_ = tensor.mean(wps)
    wps2_ = tensor.mean(wps**2)

    ess_ps = (wps_**2 / wps2_)
Ejemplo n.º 7
0
    x = tensor.matrix('features')

    x_ = replicate_batch(x, n_samples)
    samples, log_p, log_q = brick.sample_q(x_)

    # Reshape and sum
    samples = unflatten_values(samples, batch_size, n_samples)
    log_p = unflatten_values(log_p, batch_size, n_samples)
    log_q = unflatten_values(log_q, batch_size, n_samples)

    # Importance weights for q proposal for p
    log_p_all = sum(log_p)  # This is the python sum over a list
    log_q_all = sum(log_q)  # This is the python sum over a list

    log_pq = (log_p_all - log_q_all) - tensor.log(n_samples)
    w_norm = logsumexp(log_pq, axis=1)
    log_wp = log_pq - tensor.shape_padright(w_norm)
    wp = tensor.exp(log_wp)

    wp_ = tensor.mean(wp)
    wp2_ = tensor.mean(wp**2)

    ess_p = (wp_**2 / wp2_)

    # Importance weights for q proposal for p*
    wps = brick.importance_weights(log_p, log_q)

    wps_ = tensor.mean(wps)
    wps2_ = tensor.mean(wps**2)

    ess_ps = (wps_**2 / wps2_)
Ejemplo n.º 8
0
    batch_size = 1
    n_samples = tensor.iscalar('n_samples')
    n_inner = tensor.iscalar('n_inner')
    #x = tensor.matrix('features')
    #x_ = replicate_batch(x, n_samples)

    samples, log_p, log_q = brick.sample_p(n_samples)
    log_px, log_psx = brick.log_likelihood(samples[0], n_inner)

    log_p = sum(log_p)
    log_q = sum(log_q)

    log_psxp  = 1/2.*log_psx + 1/2.*(log_q-log_p)
    log_psxp2 = 2 * log_psxp

    log_psxp  = logsumexp(log_psxp)
    log_psxp2 = logsumexp(log_psxp2)

    do_z = theano.function(
                        [n_samples, n_inner], 
                        [log_psxp, log_psxp2],
                        name="do_z", allow_input_downcast=True)

    #----------------------------------------------------------------------
    logger.info("Computing Z...")

    batch_size = args.batch_size // args.ninner

    n_samples = []
    log_psxp  = []
    log_psxp2 = []
Ejemplo n.º 9
0
Archivo: est-z.py Proyecto: afcarl/bihm
    batch_size = 1
    n_samples = tensor.iscalar('n_samples')
    n_inner = tensor.iscalar('n_inner')
    #x = tensor.matrix('features')
    #x_ = replicate_batch(x, n_samples)

    samples, log_p, log_q = brick.sample_p(n_samples)
    log_px, log_psx = brick.log_likelihood(samples[0], n_inner)

    log_p = sum(log_p)
    log_q = sum(log_q)

    log_psxp = 1 / 2. * log_psx + 1 / 2. * (log_q - log_p)
    log_psxp2 = 2 * log_psxp

    log_psxp = logsumexp(log_psxp)
    log_psxp2 = logsumexp(log_psxp2)

    do_z = theano.function([n_samples, n_inner], [log_psxp, log_psxp2],
                           name="do_z",
                           allow_input_downcast=True)

    #----------------------------------------------------------------------
    logger.info("Computing Z...")

    batch_size = args.batch_size // args.ninner

    n_samples = []
    log_psxp = []
    log_psxp2 = []
    for k in xrange(0, args.nsamples, batch_size):