Ejemplo n.º 1
0
def get_ranked_ingreds_from_cooc(ingred):
    ingreds = get_json('all_ingreds_filtered.json')
    ingred_to_ix = {k: v for v, k in enumerate(ingreds)}
    ix_to_ingred = {v: k for v, k in enumerate(ingreds)}

    cooc = np.array(get_json('cooc.json'))

    ingred_ix = ingred_to_ix[ingred]
    ranked_ixs = np.argsort(cooc[ingred_ix])
    ranked_ixs = np.flip(ranked_ixs)

    ranked_ingreds = {}
    for ranked_ix in ranked_ixs:
        cooccurrences = cooc[ingred_ix, ranked_ix]
        if cooccurrences == 0:
            break
        ranked_ingreds[ix_to_ingred[ranked_ix]] = cooccurrences

    return ranked_ingreds
Ejemplo n.º 2
0
def make_recipe_matrix():
    '''2D matrix whose rows are ingredients and cols are recipes titles.
    A 1 denotes the occurence of an ingredient in a given recipe.'''
    ingreds = get_json('all_ingreds_filtered.json')
    recipes = get_json('recipe_data_filtered.json')

    titles = []
    for recipe in recipes:
        titles.append(recipe['title'])

    df = pd.DataFrame(0, ingreds, titles)

    ingreds = set(ingreds)
    for recipe in recipes:
        recipe_ingreds = set(recipe['ingreds'])
        matches = recipe_ingreds & ingreds
        if len(matches) > 0:
            df.loc[list(matches), recipe['title']] += 1

    return df.to_numpy()
Ejemplo n.º 3
0
def write_recipe_matrix(outfile='recipe_matrix.json'):
    '''2D matrix whose rows are ingredients and cols are recipes.
    A 1 denotes the occurence of an ingredient in a given recipe.'''
    ingreds = helper.get_json('all_ingreds_filtered.json')
    recipes = helper.get_json('recipe_data_filtered.json')

    titles = []
    for recipe in recipes:
        titles.append(recipe['title'])

    df = pd.DataFrame(0, ingreds, titles)

    ingreds = set(ingreds)
    for recipe in recipes:
        recipe_ingreds = set(recipe['ingreds'])
        matches = recipe_ingreds & ingreds
        if len(matches) > 0:
            df.loc[list(matches), recipe['title']] = 1

    data = df.to_numpy()
    data = data.tolist()
    helper.write_json(data, outfile, 'w')
Ejemplo n.º 4
0
def write_all_ingreds(recipe_file_name, ingred_file_name):
    """Save json of all ingreds in recipe_file_name to ingred_file_name."""
    data = helper.get_json(recipe_file_name)

    ingreds = []
    for recipe in data:
        ingreds.append(recipe['ingreds'])
    ingreds = [ingred for sublist in ingreds for ingred in sublist]
    ingreds = list(set(ingreds))
    ingreds.sort()

    helper.write_json(ingreds, ingred_file_name, 'w')
    return ingreds
Ejemplo n.º 5
0
def write_recipe_data_filtered(infile, outfile):
    """Filter recipes from infile and save to outfile as json."""
    data = helper.get_json(infile)
    with open('approved_ingreds', 'r', encoding="utf8") as f:
        approved_ingreds = set(f.read().splitlines())
    ingred_filters = generate_ingred_filters(approved_ingreds)

    # Remove duplicate recipes
    df = pd.DataFrame(data)
    df_unique = df[~df['title'].duplicated()]
    data = df_unique.to_dict('records')

    for recipe in data:
        filtered_ingreds = filter_naive(recipe['ingreds'], ingred_filters)
        recipe['ingreds'] = filtered_ingreds

    helper.write_json(data, outfile, 'w')
Ejemplo n.º 6
0
def write_all_ingreds_lemma(infile='all_ingreds_filtered.json',
                            outfile='static/all_ingreds_lemma.json'):
    """Save json of lemmatization of ingreds in infile to outfile."""
    ingreds = helper.get_json(infile)
    ingreds = [lemmatize(ingred) for ingred in ingreds]
    helper.write_json(ingreds, outfile, 'w')
c_property = df['c_property']
rew = df['rew']
rew_clean = df['rew_clean']

rew_latlong = df['latlong']

# Load the model
model = get_model()
gbr = model['gbr']
f1 = model['f1n']
f2 = model['f2n']
f3 = model['f3n']
f4 = model['f4n']
stackedmodel = model['stackedmodel']

geo_json = get_json()
recommender = get_recommender()

#variables
neighbourhoods = list(np.array(area['Neighbourhood_Name']))
n_values = list(np.array(area['N_Value']))
options = [{
    'label': name,
    'value': value
} for name, value in zip(neighbourhoods, n_values)]
mapbox_access_token = "pk.eyJ1IjoiamFja3AiLCJhIjoidGpzN0lXVSJ9.7YK6eRwUNFwd3ODZff6JvA"
year = 2020
GoogleMaps(app, key="AIzaSyAvzm0x2kmJoeqX6VY83lMa8pPRDDjH4sY")
cols = list(rew.columns)
type_list = cols[cols.index('House'):cols.index('Multifamily') + 1]
Ejemplo n.º 8
0
import http
import random

from flask import Flask, jsonify, render_template, request, session

import matrix
from helper import get_json

app = Flask(__name__)
app.config.from_object('config')

VERSION_STR = '?v=0.61'
ALL_INGREDS = [
    ingred.lower() for ingred in get_json('./static/all_ingreds_lemma.json')
]

# TODO:
#       Try render_template instead of js stuff? Just use js for fetch?
# Or even move that straight to html with method="POST" action="/search"?
#     - Get seperate JQuery source seperate from datatables bundle.
#       load JQuery first, then typeahead, then datatables
#       for faster load time.
#     - allow multiple inputs
#       Emojis, anyone?


@app.route("/")
def index():
    init_session_vars()
    remove_invalid_session_ingreds()
    cur_ingreds = get_session_var('cur_ingreds')
Ejemplo n.º 9
0
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np

from helper import get_json

if __name__ == "__main__":
    cooc = get_json('cooc.json')
    ingreds = get_json('all_ingreds_filtered.json')
    G = nx.from_numpy_array(np.array(cooc))
    nx.draw(G)
    plt.show()
Ejemplo n.º 10
0
def main():
    ingreds = 'onion'
    recipe_matrix = np.array(get_json('recipe_matrix.json'))
    all_ingreds = get_json('all_ingreds_filtered.json')
    get_ranked_ingreds_naive(ingreds, recipe_matrix, all_ingreds)
Ejemplo n.º 11
0
import numpy as np

from sklearn.metrics.pairwise import cosine_similarity as cs

from helper import get_json, timer
'''2D matrix whose rows are ingredients and cols are recipes.
A 1 denotes the occurence of an ingredient in a given recipe.'''
RECIPE_MATRIX = np.array(get_json('recipe_matrix.json'))
INGRED_AXIS = 0
RECIPE_AXIS = 1

ALL_INGREDS = get_json('all_ingreds_filtered.json')
INGRED_TO_IX = {k: i for i, k in enumerate(ALL_INGREDS)}
IX_TO_INGRED = {i: k for i, k in enumerate(ALL_INGREDS)}

RECIPE_DATA = get_json('recipe_data_filtered.json')
IX_TO_RECIPE = {i: (r['title'], r['url']) for i, r in enumerate(RECIPE_DATA)}


def get_recommended(input_ingreds):
    if isinstance(input_ingreds, str):
        input_ingreds = [input_ingreds]

    match_recipe_ixs = get_match_recipe_ixs(input_ingreds)
    ranked_ingreds = get_ranked_ingreds(input_ingreds, match_recipe_ixs)
    match_recipes = get_match_recipes(match_recipe_ixs)

    return ranked_ingreds, match_recipes


def get_ranked_ingreds(input_ingreds, match_recipe_ixs):