Ejemplo n.º 1
0
def compare_approxiation(x,
                         y,
                         x_approx,
                         y_approx,
                         error=None,
                         name="1",
                         title=""):
    """
    Compare the input data with the fitted function
    """
    _, ax = plt.subplots(2, 1)
    ax[0].plot(x, y, "o", label="Original data", markersize=2)
    ax[0].plot(x_approx, y_approx, label="Fitted line")
    ax[0].set_xlabel("$x$")
    ax[0].set_ylabel("$y$")
    ax[0].legend()
    ax[0].set_title(title)
    if y.shape == y_approx.shape:
        error = y - y_approx
    if error is not None:
        ax[1].plot(x, error, "o", label="Error", markersize=2)
        ax[1].plot(x_approx, np.zeros(y_approx.shape), label="Fitted line")
        ax[1].set_title("Error")
        ax[1].set_xlabel("$x$")
        ax[1].set_ylabel("$\Delta y$")
    else:
        print("Cannot compare difference, x and x_approx need to be equal")
    plt.tight_layout()
    show_and_save("task1_approx_{}".format(name))
Ejemplo n.º 2
0
def plot_phase_portrait(A,
                        range=[[-10, 10], [-10, 10]],
                        resolution=[100, 100],
                        trajectory=None,
                        name="phaseportrait",
                        title=""):
    """
    Create a phase portrait for matrix A in the given range with a given resolution.
    Optionally add a trajectory to plot in the phase portrait. Includes a filename and plot-title.
    """
    x = np.linspace(range[0][0], range[0][1], num=resolution[0])
    y = np.linspace(range[1][0], range[1][1], num=resolution[1])
    xv, yv = np.meshgrid(x, y)
    xy = np.stack((np.ravel(xv), np.ravel(yv)), axis=-1)
    uv = xy @ A
    u = uv[:, 0].reshape(resolution)
    v = uv[:, 1].reshape(resolution)
    plt.figure()
    ax = plt.subplot(1, 1, 1)
    ax.set_aspect('equal')
    ax.set_xlim([-10, 10])
    ax.set_ylim([-10, 10])
    ax.set_title(title)
    ax.streamplot(x, y, u, v)
    if trajectory is not None:
        ax.plot(trajectory[:, 0], trajectory[:, 1])
    show_and_save("task2_{}".format(name))
Ejemplo n.º 3
0
def plot_3d_data(x, y, z, name="", labels=["x", "y", "z"], title=""):
    """
    Plot and save 3-D data.

    Parameters
    ----------
    x : (N, 1) array-like
        x coordinates of the data.
    y : (N, 1) array-like
        y coordinates of the data.
    z : (N, 1) array-like
        z coordinates of the data.
    name : string, optional
        Filename addition. Default: ""
    labels : list, optional
        Labels of axes. Default: ["x", "y", "z"]
    title : string, optional
        Title of the plot. Default: ""
    """
    # Create the figure
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    # Plot the values
    ax.plot(x, y, z, linewidth=0.4)
    ax.set_xlabel(labels[0])
    ax.set_ylabel(labels[1])
    ax.set_zlabel(labels[2])

    show_and_save("task4_{}".format(name))
Ejemplo n.º 4
0
def plot_data(x, y, name="", labels=["x", "y"], title=""):
    """
    Plot and save 2-D data.

    Parameters
    ----------
    x : (N, 1) array-like
        x coordinates of the data.
    y : (N, 1) array-like
        y coordinates of the data.
    name : string, optional
        Filename addition. Default: ""
    labels : list, optional
        Labels of axes. Default: ["x", "y"]
    title : string, optional
        Title of the plot. Default: ""
    """
    plt.figure()
    plt.plot(x, y, label=title)
    plt.title(title)
    plt.legend()
    plt.xlabel(labels[0])
    plt.ylabel(labels[1])
    ax = plt.gca()
    ax.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
    show_and_save("task5_{}".format(name))
Ejemplo n.º 5
0
def nonlinear_vf(x0, x1, yi):
    plt.figure()
    plt.quiver(x0[:, 0], x0[:, 1], x1[:, 0], yi)

    plt.title("Vector field generated with RBF")
    plt.xlabel("$x$")
    plt.ylabel("$y$")
    show_and_save("task3_{}".format("nonlinear_vf"))

    # Compute the mean squared error
    mse = ((np.array(list(zip(x1[:, 0], yi))) - x1)**2).mean(axis=0)
    print("Mean squared error: {}".format(mse))
Ejemplo n.º 6
0
def linear_vf(x0, x1, dt, A, t_end=0.1):
    # Solve x_dot=A*x with all x_0^(k) as initial points until
    x = task2.create_trajectory(x0, A, dt, t_end)
    # The resulting points are estimates for x_1^(k).

    plt.figure()
    plt.quiver(x0[:, 0], x0[:, 1], x[-1][:, 0], x[-1][:, 1])

    plt.title("Vector field generated with linear operator")
    plt.xlabel("$x$")
    plt.ylabel("$y$")
    show_and_save("task3_{}".format("linear_vf"))

    # Compute the mean squared error to x1
    mse = ((x[-1] - x1)**2).mean(axis=0)
    print("Mean squared error: {}".format(mse))
Ejemplo n.º 7
0
def scatter_3d_data(x,
                    y,
                    z,
                    name="",
                    labels=["x", "y", "z"],
                    title="",
                    c=None,
                    cmap=None,
                    norm=None):
    """
    Scatter and save 3-D data.

    Parameters
    ----------
    x : (N, 1) array-like
        x coordinates of the data.
    y : (N, 1) array-like
        y coordinates of the data.
    z : (N, 1) array-like
        z coordinates of the data.
    name : string, optional
        Filename addition. Default: ""
    labels : list, optional
        Labels of axes. Default: ["x", "y", "z"]
    title : string, optional
        Title of the plot. Default: ""
    """
    # Create the figure
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # Scatter the values
    sc = ax.scatter(x, y, z, s=1, c=c, cmap=cmap, norm=norm)
    ax.set_title(title)
    ax.set_xlabel(labels[0])
    ax.set_ylabel(labels[1])
    ax.set_zlabel(labels[2])
    cb = plt.colorbar(sc, pad=0.1)
    cb.set_ticks([0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200])
    show_and_save("task5_{}".format(name))
Ejemplo n.º 8
0
def plot_vectorfields(*args, labels=[], name="", title=""):
    """
    Plot multiple vectorfields (len(args)). Include optional labels, a filename and plot-title
    """
    marker = ["o", "x"]
    plt.figure()
    for idx, arg in enumerate(args):
        if idx < len(labels):
            plt.plot(arg[:, 0],
                     arg[:, 1],
                     marker[idx % len(marker)],
                     label=labels[idx],
                     markersize=3)
        else:
            plt.plot(arg[:, 0],
                     arg[:, 1],
                     marker[idx % len(marker)],
                     markersize=3)
    plt.title(title)
    plt.legend()
    plt.xlabel("$x$")
    plt.ylabel("$y$")
    show_and_save("task2_{}".format(name))
Ejemplo n.º 9
0
def scatter_data(x, y, name="", labels=["x", "y"], title=""):
    """
    Scatter and save 2-D data.

    Parameters
    ----------
    x : (N, 1) array-like
        x coordinates of the data.
    y : (N, 1) array-like
        y coordinates of the data.
    name : string, optional
        Filename addition. Default: ""
    labels : list, optional
        Labels of axes. Default: ["x", "y"]
    title : string, optional
        Title of the plot. Default: ""
    """
    plt.figure()
    plt.scatter(x, y, label=title)
    plt.title(title)
    plt.legend()
    plt.xlabel(labels[0])
    plt.ylabel(labels[1])
    show_and_save("task3_{}".format(name))