def round_function(message_L, message_R, internal_key, iteration): new_L = message_R # process the right part of message if iteration % 2 == 0: transposed = helper.shuffle(message_R, False) else: transposed = helper.shuffle(message_R) dotted = np.remainder(np.dot(transposed, internal_key), 2).astype(int) substituted = dotted[:, :] for i in range(len(dotted)): substituted[i] = helper.substitute(dotted[i]) new_R = substituted ^ message_L return new_L, new_R
def assign_team_ids(pids, intgen): ''' pids: [t] intgen: int -> int -> int return: [Player] ''' roles = get_default_roles(len(pids)) shuffled_roles = shuffle(roles, intgen) return map(lambda pid, role: r.Player(pid, role), pids, shuffled_roles)
def reshuffle_data(self): """ Reshuffle train data between epochs """ graphs, labels = helper.group_same_size(self.train_graphs, self.train_labels) graphs, labels = helper.shuffle_same_size(graphs, labels) graphs, labels = helper.split_to_batches(graphs, labels, self.batch_size) self.num_iterations_train = len(graphs) graphs, labels = helper.shuffle(graphs, labels) self.iter = zip(graphs, labels)
def make_poly_ratio_limit(var="x", s=[0, 1, 2]): """ Generates a ratio of two polynomials, and evaluates them at infinity. x : charector for the variable to be solved for. defaults to "x". OR a list of possible charectors. A random selection will be made from them. s : selects the kind of solution 0 : limit at infinity is zero 1 : limit as infinity is a nonzero finite number 2 : limit at infinity is either +infinity or -infinity default: one of the above is randomly selected """ if isinstance(var, str): var = sympy.Symbol(var) elif isinstance(var, list): var = sympy.Symbol(random.choice(var)) if isinstance(s, list): s = random.choice(s) if s == 2: # infinity p1 = random.randint(2, 4) p2 = p1 - 1 elif s == 1: # ratio of leading coefficients p1 = random.randint(2, 4) p2 = p1 elif s == 0: # zero p1 = random.randint(2, 4) p2 = random.randint(p1, p1 + 2) select = [shuffle(digits_nozero)[0]] + shuffle(range(10)[:p1 - 1]) num = sum([(k + 1) * var**i for i, k in enumerate(select)]) select = [shuffle(digits_nozero)[0]] + shuffle(range(10)[:p2 - 1]) denom = sum([(k + 1) * var**i for i, k in enumerate(select)]) e = num / denom s = sympy.limit(e, var, sympy.oo) e = "\lim_{x \\to \infty}" + sympy.latex(e) return render(e), render(s)
def make_rational_poly_simplify(var="x"): """ Generates a rational expression of 4 polynomials, to be simplified. Example: ( (x**2 + 16*x + 60) / (x**2 - 36)) / ( (x**2 - 2*x - 63) / (x**2 - 5*x - 36) x : charector for the variable to be solved for. defaults to random selection from the global list `alpha`. OR a list of possible charectors. A random selection will be made from them. """ if not var: var = random.choice(alpha) elif isinstance(var, list): var = random.choice(var) exclude = [var.upper(), var.lower()] x = sympy.Symbol(var) select = shuffle(range(-10,-1) + range(1,10))[:6] e1 = sympy.prod([x - i for i in shuffle(select)[:2]]).expand() e2 = sympy.prod([x - i for i in shuffle(select)[:2]]).expand() e3 = sympy.prod([x - i for i in shuffle(select)[:2]]).expand() e4 = sympy.prod([x - i for i in shuffle(select)[:2]]).expand() L = len(set([e1, e2, e3, e4])) e = ((e1/e2) / (e3 / e4)) s1 = ''.join(["\\frac{", sympy.latex(e1), "}", "{", sympy.latex(e2), "}"]) s2 = ''.join(["\\frac{", sympy.latex(e3), "}", "{", sympy.latex(e4), "}"]) s3 = ''.join(["$$\\frac{", s1, "}", "{", s2, "}$$"]) pieces = str(e.factor()).split("/") try: num, denom= [parse_expr(i).expand() for i in pieces] except: return make_rational_poly_simplify(var) if len(pieces) !=2 or L < 4 or degree(num) > 2 or degree(denom) > 2: return make_rational_poly_simplify(var) return s3, render(num / denom)
def make_rational_poly_simplify(var="x"): """ Generates a rational expression of 4 polynomials, to be simplified. Example: ( (x**2 + 16*x + 60) / (x**2 - 36)) / ( (x**2 - 2*x - 63) / (x**2 - 5*x - 36) x : charector for the variable to be solved for. defaults to random selection from the global list `alpha`. OR a list of possible charectors. A random selection will be made from them. """ if not var: var = random.choice(alpha) elif isinstance(var, list): var = random.choice(var) exclude = [var.upper(), var.lower()] x = sympy.Symbol(var) select = shuffle(range(-10, -1) + range(1, 10))[:6] e1 = sympy.prod([x - i for i in shuffle(select)[:2]]).expand() e2 = sympy.prod([x - i for i in shuffle(select)[:2]]).expand() e3 = sympy.prod([x - i for i in shuffle(select)[:2]]).expand() e4 = sympy.prod([x - i for i in shuffle(select)[:2]]).expand() L = len(set([e1, e2, e3, e4])) e = ((e1 / e2) / (e3 / e4)) s1 = ''.join(["\\frac{", sympy.latex(e1), "}", "{", sympy.latex(e2), "}"]) s2 = ''.join(["\\frac{", sympy.latex(e3), "}", "{", sympy.latex(e4), "}"]) s3 = ''.join(["$$\\frac{", s1, "}", "{", s2, "}$$"]) pieces = str(e.factor()).split("/") try: num, denom = [parse_expr(i).expand() for i in pieces] except: return make_rational_poly_simplify(var) if len(pieces) != 2 or L < 4 or degree(num) > 2 or degree(denom) > 2: return make_rational_poly_simplify(var) return s3, render(num / denom)
import numpy as np import time import matplotlib.pyplot as plt from loadFile import read_file, read_csv from helper import split_set, shuffle import neuralNetwork as nn from plotCurve import learning_curve, learning_rate_curve import roc X, Y, titles = read_csv("data.csv") X_norm = nn.normalization(X) layers_dims = [X.shape[0], 25, 15, 5, 1] hyperparameters = nn.hyperparameter_initialization(layers_dims, learning_rate=0.001, num_iter=20000, print_cost=True, reg_factor=1) #learning_rate_curve(X, Y, hyperparameters) X_shuffled, Y_shuffled = shuffle(X_norm, Y) X_train, Y_train, X_test, Y_test = split_set(X_shuffled, Y_shuffled, 0.6) parameters = nn.model(X_train, Y_train, hyperparameters) pred = nn.predict(X_test, parameters) roc.plot(pred, Y_test)
def words(num=False): if not num: num = 3 return helper.shuffle(definitions.lorem())[:num]
def init_tagged(percentage, rng): corp = helper.read_tiger(TIGER_FILE) tagged_sents = corp.tagged_sents() return helper.shuffle(tagged_sents, rng), int(len(tagged_sents) * percentage)
import os reload(sys) sys.setdefaultencoding("utf-8") import helper import tensorflow as tf import numpy as np image_size = 64 depth_1st_layer = 32 depth_2rd_layer = 64 batch_size = 128 fc1 = 1024 if (True): (XoB, YoB) = helper.storeAllPicInMe(flagOfO=False, flagOfB=True, size=64) (Xo0, Yo0) = helper.storeAllPicInMe(flagOfB=False, flagOfO=True, size=64) Xo0, Yo0 = helper.shuffle(Xo0, Yo0) X = Xo0 + XoB Y = Yo0 + YoB dictory, Y = helper.convertDiscretToContinueT(Y) Y = helper.convertIndexTovector(len(dictory), Y) print "loading finished" if (False): (X, Y) = helper.storeAllPicInMe(flagOfO=True, flagOfB=True) dictory, Y = helper.convertDiscretToContinueT(Y) Y = helper.convertIndexTovector(len(dictory), Y) X, Y = helper.shuffle(X, Y) train_data_x = X[994:] train_data_y = Y[994:] test_data_x = X[0:994]