from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from helper import get_data, split_data, visualize name = 'Support vector' if __name__ == '__main__': x, y = get_data() y = y.reshape(len(y), 1) x_train, x_test, y_train, y_test = split_data(x, y) x_scaler = StandardScaler() y_scaler = StandardScaler() x_train = x_scaler.fit_transform(x_train) x_test = x_scaler.transform(x_test) y_train = y_scaler.fit_transform(y_train) y_test = y_scaler.transform(y_test) regression = SVR(kernel='rbf') regression.fit(x_train, y_train) y_predicted = regression.predict(x_test) y_predicted = y_scaler.inverse_transform(y_predicted) y_test = y_scaler.inverse_transform(y_test) visualize(y_test, y_predicted, name)
Linear_test_aug = transforms.Compose( [transforms.ToPILImage(), transforms.ToTensor()]) Linear_testset = ImageDataset(root_dir=test_root, class_file=classFile, transforms=Linear_test_aug) Linear_testloader = DataLoader(Linear_testset, batch_size=512, shuffle=False, num_workers=num_worker) # ========== [visualize] ========== if batch_size >= 64: visualize(Linear_trainloader, dir_log + '/' + 'visual.png') # ========== [device] ============= device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ========== [cnn model] ========== ckpt = torch.load(dir_ckpt + '/' + 'best.pt') model = ResNet(pretrain=False) model.load_state_dict(ckpt["cnn"]) model.to(device) linear_clf = Linear_Classifier(classNum=10) linear_clf.load_state_dict(ckpt["clf"]) linear_clf.to(device) # opt_clf = optim.SGD(linear_clf.parameters(), # lr=1e-2, # momentum=0.9,
f_ishift = np.fft.ifftshift(s) img_back = np.fft.ifft2(f_ishift) img_back = np.abs(img_back) fig, ax = plt.subplots(figsize=(20, 10)) plt.subplot(141), plt.imshow(img.numpy(), cmap='gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([]) plt.subplot(142), plt.imshow(magnitude_spectrum, cmap='gray') plt.title('unmasked k-space'), plt.xticks([]), plt.yticks([]) plt.subplot(143), plt.imshow(20 * np.log(np.abs(s)), cmap='gray') plt.title('masked k-space'), plt.xticks([]), plt.yticks([]) plt.subplot(144), plt.imshow(img_back, cmap='gray') plt.title('ifft'), plt.xticks([]), plt.yticks([]) plt.show() helper.visualize(helper.difference(img.numpy(), img_back)) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) transform = transforms.Compose([ transforms.Resize(256), transforms.Grayscale(num_output_channels=1), transforms.ToTensor() ]) batch_size = 20 # load the training and test datasets train_data = datasets.ImageFolder( root= 'C:\\Users\\tobi9\\Documents\\GitHub\\RefineGAN\\data\\brain\\db_train', transform=transform) test_data = datasets.ImageFolder(
from sklearn import svm import numpy import pylab from helper import visualize X=numpy.array([[0,0],[1,1],[1,0],[0,1]]) Y=[0,1,1,1] svc=svm.SVC(C=1.0,kernel='linear') trainedsvm=svc.fit(X,Y) visualize(trainedsvm,X,Y,[[-1.5,1.5],[-1.5,1.5]],100) print trainedsvm.predict([0,0]) print trainedsvm.predict([1,0])
Linear_testset = ImageDataset( root_dir=test_root, class_file=classFile, transforms=Linear_test_aug ) Linear_testloader = DataLoader( Linear_testset, batch_size=256, shuffle=False, num_workers=num_worker ) # ========== [visualize] ========== if batch_size >= 64: visualize(trainloader, dir_log + '/' + 'visual.png') # ========== [device] ============= device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ========== [cnn model] ========== model = Resnet18() model.to(device) g = Projector(input_size=project_in, hidden_size=project_hidden, output_size=project_out) g.to(device) # ========== [optim for cnn] ========== opt_cnn = optim.SGD( list(model.parameters()) + list(g.parameters()), lr=lr, momentum=momentnum,
from sklearn import svm import numpy import pylab from helper import visualize ,dataFromFile obj1=dataFromFile('object1.txt') obj2=dataFromFile('object2.txt') label1= [1]*len(obj1) label2=[0]*len(obj2) trainingData=numpy.array( obj1+obj2) labels=numpy.array(label1+label2) svc=svm.SVC(C=1.0,kernel='linear') trainedsvm=svc.fit(trainingData,labels) visualize(trainedsvm,trainingData,labels,[[-1,25],[-1,25]],100) #X=numpy.array([[0,0],[1,1],[1,0],[0,1]]) #Y=[0,1,1,1] #trainedsvm=svc.fit(X,Y) #print "True Label for [0,0] :" ,0, " Predicted :" ,trainedsvm.predict([0,0]) #print "True Label for [1,0:" ,1, " Predicted :" ,trainedsvm.predict([1,0]) #visualize(trainedsvm,X,Y,[[-1.5,1.5],[-1.5,1.5]],100) #sample_weight=[2,1,1,1]
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 90, 1) img_rot = np.rot90(img) img_180 = np.rot90(img_rot) img_rot = [[1, 1, 1, 0], [1, 1, 1, 0], [1, 1, 1, 0], [1, 1, 1, 0]] img_180 = np.rot90(img_rot) f_90 = np.fft.fft2(img_rot) fshift_90 = np.fft.fftshift(f_90) magnitude_spectrum_90 = (20 * np.log(np.abs(fshift_90))) f_180 = np.fft.fft2(img_180) fshift_180 = np.fft.fftshift(f_180) magnitude_spectrum_180 = (20 * np.log(np.abs(fshift_180))) helper.visualize(helper.difference(img, img_back)) #helper.visualize(helper.difference(magnitude_spectrum,magnitude_spectrum_180)) fig, ax = plt.subplots(figsize=(20, 10)) plt.subplot(141), plt.imshow(img, cmap='gray') plt.title('Input Image'), plt.xticks([]), plt.yticks([]) plt.subplot(142), plt.imshow(magnitude_spectrum, cmap='gray') plt.title('unmasked k-space'), plt.xticks([]), plt.yticks([]) plt.subplot(143), plt.imshow(ims, cmap='gray') plt.title('masked k-space'), plt.xticks([]), plt.yticks([]) plt.subplot(144), plt.imshow(img_back, cmap='gray') plt.title('ifft'), plt.xticks([]), plt.yticks([]) plt.show() fig, ax = plt.subplots(figsize=(20, 10)) plt.subplot(141), plt.imshow(img_rot, cmap='gray')
return t, total def info(title): print(title) print('module name:', __name__) print('parent process:', os.getppid()) print('process id:', os.getpid()) if __name__ == '__main__': info('main line') # make larger file file_iterations('filedata.txt', 100000, 'newfile.txt') # # of processes n = [1, 2, 3, 4, 5] # times of processing, and total size of data streamed into buffer times = [] sizes = [] for i in n: result = test_mfmb(i) times.append(result[0]) sizes.append(result[1]) visualize(times, n, sizes)